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Kimble, John Hall Symposium (invited), JILA, University of Colorado, Boulder (8/14/04).
“Quantum Aspects of Precision Measurement,” JM Geremia, Los Alamos QUEST Annual
Meeting, Santa Fe, NM (8/04).

“Optimal Classical Communication at the Quantum Noise Limit,” JM Geremia, Caltech
Principles and Applications of Control in Quantum Systems (PRACQSYS’04) Meeting,
Pasadena, CA (8/04).

“Real-time feedback control of quantum state reduction,” Hideo Mabuchi, XI1X
International Conference on Atomic Physics (ICAP 2004), Rio de Janeiro, Brazil (7/27/04).
“Cavity QED with single atoms and photons,” H. J. Kimble, XIX International Conference
on Atomic Physics (ICAP 2004) (invited), Rio de Janeiro, Brazil (7/26/04).

“Feedback stabilization of quantum entangled-state preparation,” Hideo Mabuchi, Fields
Institute Meeting on Quantum Information and Quantum Control, Toronto, Canada
(7/22/04).

“Quantum Computation,” John Preskill, 17th International Conference on General
Relativity and Gravitation, Dublin, Ireland (7/21/04).

“Feedback Control of Continuous Projective Measurement,” (poster) J. Stockton, Quantum
Information and Quantum Control, University of Toronto, Toronto, Canada (7/19-
23/2004).

“Feedback control for quantum and classical uncertainty management,” Hideo Mabuchi,
Connections: 50" Birthday Celebration for John Doyle, Pasadena, CA (7/15/04).
“Long-range entanglement in 3D noisy cluster states,” R. Raussendorf, Toronto, Canada
(7/04).



69.

70.

71.

72.

73.

74,

75.

76.

77,

78.

79.

80.

81.

82.

83.

84.

85.

“Cavity QED with single atoms and photons,” H. J. Kimble, 2004 IEEE/LEOS Summer
Topical Meetings (invited), San Diego, CA (6/28/04).

“Continuous Measurement and Control of Atomic Spin Ensembles,” J. Stockton, Caltech
Candidacy Talk, Pasadena, CA (6/17/04).

“Cavity QED with single atoms and photons,” H. J. Kimble, FOCUS -- Building
Computational Devices Using Coherent Control (invited), University of Michigan, Ann
Arbor, MI (6/9/04).

“Feedback Control of Continuous Projective Measurement,” (poster) J. Stockton, FOCUS -
- Building Computational Devices Using Coherent Control (invited), University of
Michigan, Ann Arbor, MI (6/7-9/2004).

“Feedback control of quantum state reduction,” H. Mabuchi, FOCUS -- Building
Computational Devices Using Coherent Control (invited), University of Michigan, Ann
Arbor, MI (6/9/04).

“Topological quantum computing for beginners,” John Preskill, KITP Conference on
Exotic Order, Santa Barbara, CA (6/7/04).

“Quantum Measurement, Entanglement and Feedback,” J. M. Geremia, Physics
Department Seminar (invited), California State University Long Beach, Long Beach, CA
(6/04).

“Quantum measurement and feedback with atomic spins,” Hideo Mabuchi, APS Division
of Atomic, Molecular, Optical, and Plasma Physics, Tucson, AZ (5/26/04).

“Cavity QED with Trapped Atoms for Quantum Optics and Quantum Information,” J.
McKeever, Ph.D. Defense, Caltech, Pasadena, CA (5/24/04).

“Cavity QED with multiple atomic excited states,” K. Birnbaum, CLEO/IQEC 2004, San
Francisco, CA (5/18/04).

“Single photon generation ‘on demand’ from a single trapped atom strongly coupled to an
optical cavity,” J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich
and H. J. Kimble, New Focus/Bookham Student Award Session, CLEO/IQEC 2004, San
Francisco, CA (5/16-21/2004).

“Single photon generation ‘on demand’ from a single trapped atom strongly coupled to an
optical cavity,” J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich
and H. J. Kimble, Single Photon Symposium I, CLEO/IQEC 2004, San Francisco, CA
(5/16-21/2004).

“Nonclassical Photon Pairs from a Cold Atomic Ensemble for Scalable Quantum
Communication,” S. Polyakov, CLEO/IQEC 2004 (invited), San Francisco, CA (5/16-
21/2004).

“Recent Progress in Quantum Information Science,” John Preskill, Seven Pines
Conference, Stillwater, MN (5/8/04).

“Feedback Control of Quantum Star Reduction,” R. van Handel, 8" Southern California
Nonlinear Control Workshop, UCSB, Santa Barbara, CA (5/8/04).

“Cavity QED -- From Purcell and Casimir to the Era of Strong Coupling for Single Atoms
and Photons,” H. J. Kimble, Lilienfeld Prize Talk, APS April Meeting 2004, Denver, CO
(5/2/04).

“Collective Spin State Preparation with Quantum Measurement and Control,” J. K.
Stockton, Workshop on Control of Quantum Mechanical Systems (CONQUEST), UC
Berkeley, Berkeley, CA (4/30/04).
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86. “Cavity Quantum Electrodynamics,” H. J. Kimble, Workshop on Quantum Information
Science and Emerging Technologies (invited), NIST, Boulder, CO (4/30/04).

87. “Fault-tolerant quantum computation using graph states,” Robert Raussendorf, University
of Innsbruck, Austria (4/28/04).

88. “Recent Progress toward the Realization of Quantum Networks,” H. J. Kimble (invited),
Harvard University, Cambridge, MA (4/19/04).

89. “Extending and Generalizing the Kochen-Specker theorem,” Ben Toner, Université de
Montreal, Parts | and 11, Montreal, Canada (4/15-16/2004).

90. “Quantum Teleportation -- Fact and Fantasy,” H. J. Kimble, Biedenharn Lecture 1V,
University of Texas at Austin, Austin, TX (4/6/04).

91. *“Quantum Teleportation -- Fact and Fantasy,” H. J. Kimble, Dean’s Scholars Lecture,
University of Texas at Austin, Austin, TX (4/2/04).

92. “Scalable Quantum Communication Networks with Photon Pairs from Atomic Ensembles,”
H. J. Kimble, Biedenharn Lecture 111, University of Texas at Austin, Austin, TX (4/1/04).

93. *“Deterministic Generation of Single Photons from One Atom Trapped in a Cavity,” J.
McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck A. Kuzmich and H. J. Kimble,
Seminar, NIST lon Storage Group (invited), Boulder, CO (4/04).

94. “Deterministic Generation of Single Photons from One Atom Trapped in a Cavity,” J.
McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck A. Kuzmich and H. J. Kimble,
JILA Seminar (invited), Boulder, CO (4/04).

95. “The New Science of Quantum Information,” H. J. Kimble, Dean’s Scholars Lecture,
University of Texas at Austin, Austin, TX (3/26/04).

96. “More Cavity Quantum Electrodynamics,” H. J. Kimble, Biedenharn Lecture I, University
of Texas at Austin, Austin, TX (3/26/04).

97. *“Measurement-based quantum computation with cluster states,” Robert Raussendorf,
University of New Mexico, Albuquerque, NM (3/26/04).

98. *“Cavity Quantum Electrodynamics -- from Purcell and Casimir to the Era of Strong
Coupling with Single Atoms and Photons,” H. J. Kimble, Department of Physics
Colloquium, Biedenharn Lecture I, University of Texas at Austin, Austin, TX (3/24/04).

99. “Real-Time Quantum Feedback Control and Precision Measurement,” JM Geremia,
University of Oregon Physics Department Seminar (invited) (3/04).

100. *“Quantum error correction for continuously detected errors,” Charlene Ahn, IBM,
Yorktown, NY (3/04).

101. “Robust quantum memory with local controls,” Jim Harrington, LANL Quantum Institute,
Los Alamos, NM (3/04).

102. “Robust quantum memory with local controls,” Jim Harrington, University of New
Mexico, Albuquerque, NM (3/04).

103. “Quantum measurement and feedback control with cold atoms,” Hideo Mabuchi,
Harvard/MIT Center for Ultracold Atoms Seminar, Cambridge, MA (3/2/04).

104. “Knowing what you know: estimation and control in nanoscale systems,” Hideo Mabuchi,
MIT Center for Bits and Atoms Colloguium, Cambridge, MA (3/1/04).

105. “Superselection Rules and Quantum Protocols,” John Preskill, Gordon Research
Conference on Quantum Information Science, Ventura, CA (2/25/04).

106. “Nonlocal games,” Ben Toner, SQuInT 2004 (invited), UC San Diego, San Diego, CA
(2/20-22/2004).
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107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

“Feedback Control of Continuous Projective Measurement,” (poster) J. Stockton, SQuInT
2004 (invited), UC San Diego, San Diego, CA (2/20-22/2004).

“Conditional anti-bunching of photons generated in a cold atomic ensemble,” S. Polyakov,
SQuInT 2004 (invited), UC San Diego, San Diego, CA (2/20-22/2004).

“Real-Time Quantum Feedback Control: Deterministic State Reduction in Cold Atoms,” J.
M. Geremia, SQuInT 2004 (invited), UC San Diego, San Diego, CA (2/20/04).
“Deterministic Generation of Single Photons from One Atom Trapped in a Cavity,” J.
McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck A. Kuzmich and H. J. Kimble,
Sixth Annual Southwest Quantum Information and Technology (SQuInT) 2004 Workshop
(invited), San Diego, CA (2/19/04).

“Magnetic Microtraps for Cavity QED, BECs, and Atom Optics,” B. Lev, IEEE Nanoscale
Devices and System Integration Conference, Miami, FL (2/15/04).

“Putting Weirdness to Work,” John Preskill, AAAS Annual Meeting, Seattle, WA
(2/14/104).

“Teleportation of Quantum States -- Fact and Fantasy,” H. J. Kimble, Quantum Weirdness
-- In Nature, In the Lab Symposium, AAAS Annual Meeting (invited), Seattle, WA
(2/14104).

“Real-Time Quantum Feedback Control of Atomic Spin Squeezing,” JM Geremia, SQuInT
Annual Meeting, San Diego, (2/04).

“Encoding a qubit into many oscillators,” Jim Harrington, SQuInT 2004 (invited), UC San
Diego, San Diego, CA (2/04).

“Magnetic Microtraps for Cavity QED, BECs, and Atom Optics,” (poster) B. Lev,
Southwest Quantum Information and Technology Network 6th Annual Meeting, UCSD,
San Diego, California (2/04).

“Continuous Quantum Nondemolition Measurement and Feedback with Cold Atoms,” JM
Geremia, University of California Berkeley AMO Physics Seminar (invited) (2/04).
“Photonic Quantum Computation through Cavity Assisted Interaction,” H. J. Kimble,
Focused Quantum Systems (FoQuS) Workshop, Falls Church, VA (1/28/04).

“Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with
Atomic Ensembles,” Chin-wen Chou, 34™ Winter Colloquium on the Physics of Quantum
Electronics (PQE) (invited), Snowbird, UT (1/8/04).

“A One-Atom Laser in the Regime of Strong Coupling,” H. J. Kimble, 34" Winter
Colloquium on the Physics of Quantum Electronics (PQE) (invited), Snowbird, UT
(1/5/04).

“Real-Time Quantum Feedback Control of Atomic Spin Squeezing,” JM Geremia,
Deutsche Forschungsgemeinschaft (DFG) Focused Meeting (invited) Bad Honef, Germany
(1/04).

“Protecting quantum states through feedback control,” Charlene Ahn, 34™ Winter
Colloquium on The Physics of Quantum Electronics (PQE), Snowbird, UT (1/04).
“Quantum error correction for continuously detected errors,” Charlene Ahn, Perimeter
Institute, Waterloo, Ontario, Canada (1/04).

“Real-time quantum feedback control,” Hideo Mabuchi, SAMSI Workshop on Multiscale
Modeling and Control Design, Research Triangle Park, NC (1/04).

“Deterministic preparation of spin-squeezed states via real-time quantum feedback,” H.
Mabuchi, Stanford-ENS Quantum Entanglement Symposium, Stanford (12/16/03).
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126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

“The New Science of Quantum Information,” H. J. Kimble, Northwestern University
(invited), Evanston, IL (11/7/03).

“An Introduction to Control Theory from Classical to Quantum,” JM Geremia, Physics
Winter School, University of Heidelberg, Germany (invited lecturer), (11/03).
“ldentification, modeling, and control of quantum and bio-molecular systems,” H.
Mabuchi, Workshop on New Horizons in Molecular Sciences and Systems: An Integrated
Approach, Okinawa, Japan (10/17/03).

“Experimental Realization of a One-Atom Laser in a Regime of Strong Coupling,” J.
McKeever, Quantum Optics Seminar, University of Toronto (invited), Toronto, Canada
(10/14/03).

“A One-Atom Laser in a Regime of Strong Coupling,” J. McKeever, A. Boca, A. D.
Boozer, J. R. Buck and H. J. Kimble, 87" OSA Annual Meeting/Laser Science XIX
(invited), Tucson, AZ (10/8/03).

“Magnetic Microtraps for Cavity QED, BECs, and Atom Optics,” B. Lev, Seminar, Max
Plank Institute for Quantum Optics, Garching, Germany (10/03).

“Overview of Caltech MURI Center for Quantum Networks,” B. Lev, MURI Kick-Off
Meeting, Stanford, Palo Alto (10/03).

“Quantum filtering and broadband atomic magnetometry,” H. Mabuchi, EURESCO
Conference on Quantum Optics, Granada, Spain (9/28/03).

“Continuous observation of open quantum systems,” H. Mabuchi, US-Japan Joint
Workshop on Coherence in Quantum Systems, Yatsugatake, Japan (9/17/03).

“Coherence in broadband atomic magnetometry,” H. Mabuchi, Tokyo University, Tokyo,
Japan (9/15/03).

“Continuous observation of open quantum systems: conditional spin-squeezing and
broadband atomic magnetometry,” H. Mabuchi, U.S.-Japan Conference on Coherence and
Quantum Systems, Hokkaido, Japan (9/12-18/2003).

“Teleportation of continuous quantum variables using squeezed-state entanglement,” K. W.
Goh, The International Symposium on Optical Science and Technology, SPIE’s 48"
Annual Meeting (invited), San Diego, CA (8/6/03).

“Spin Squeezing in Cold Atoms with Continuous Measurement,” JM Geremia, Los Alamos
QUEST Annual Meeting, Santa Fe, (8/03).

“Cavity QED by the Numbers,” H. J. Kimble, 16™ International Conference on Laser
Spectroscopy (ICOLS03) (invited), Palm Cove, Australia. (7/16/03).

“Muicrocavities: strong coupling of atoms and photons,” H. Mabuchi, Photonics
Technologies Advancement Program Workshop on Optical microcavities, San Diego. CA
(7/15/03).

“Quantum optics and quantum information science,” H. Mabuchi, OSA Topical Meeting
on Optics in Computing, Washington D.C. (6/20/03).

“Quantum Control Lecture 2,” A. C. Doherty, SQuInT Student Summer Retreat, Monterey,
CA (6/19/03).

“Quantum Control Lecture 1,” A. C. Doherty, SQuInT Student Summer Retreat, Monterey,
CA (6/18/03).

“Quantum Optics with Cold Atoms -- Cavity QED & Atomic Ensembles,” H. J. Kimble,
Gordon Research Conference - Atomic Physics (invited), Tilton, NH (6/17/03).
“Applications for Continuous Quantum Measurement of Spin Ensembles”, (poster) J. K.
Stockton, Gordon Research Conference on Atomic Physics, Tilton, NH, (6/15-20/2003).
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146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

“The New Science of Quantum Information,” H. J. Kimble, QELS Plenary Session
(invited), CLEO/QELS Conference 2003, Baltimore, MD (6/4/03).

“Experiments in quantum feedback,” H. Mabuchi, SPIE Conference on Fluctuations and
Noise, Santa Fe, NM (6/2/03).

“Magnetic Microtraps for Cavity QED,” B. Lev, Niels Bohr Institute, Copenhagen,
Denmark (5/30/03).

“Quantum Optics Enabling Information Science,” H. J. Kimble, Hertz Memorial Lecture
(invited), UC Davis, Davis, CA (5/28/03).

“Quantum Optics with Single Atoms and Photons,” H. J. Kimble, AMO Student
Symposium, DAMOP 2003 Meeting (invited), Boulder, CO (5/20/03).

“Cavity QED — From Purcell and Casimir to the Era of Strong Coupling,” H. J. Kimble,
University of Washington Colloquium (invited), Seattle, WA (5/12/03).

“Symmetric extensions, local hidden variables and modified de Finetti theorems,” A. C.
Doherty, Information Physics Group Seminar, Department of Physics, University of New
Mexico, Albuquerque, NM (4/30/03).

“Linear matrix inequalities for quantum entanglement and control,” A. C. Doherty,
Department of Mechanical and Environmental Engineering, UC Santa Barbara, Santa
Barbara, CA (4/21/03).

“Physics with photons, from quantum to bio,” H. Mabuchi, Physics colloquium, Temple
University, Philadelphia, PA (4/19-22/2003).

“Cavity QED -- The Plumbing,” H. J. Kimble, Loeb Lecture Series (invited), Harvard
University, Boston, MA (4/15/03).

“Physics with photons: from quantum to bio,” H. Mabuchi, Physics colloquium, University
of Arizona, Tucson, AZ (4/11/03).

“Quantum Teleportation -- Fact and Fantasy,” H. J. Kimble, Loeb Lecture Series (invited),
Harvard University, Boston, MA (4/10/03).

“An Overview of Cavity Quantum Electrodynamics -- from Purcell and Casimir to the Era
of Strong Coupling,” H. J. Kimble, Loeb Lecture Series (invited), Harvard University,
Boston, MA (4/8/03).

“The New Science of Quantum Information,” H. J. Kimble, Colloquium (invited), Loeb
Lecture Series, Harvard University, Boston, MA (4/7/03).

“Physics with photons: from quantum to bio,” H. Mabuchi, Optics and electronics seminar,
University of Stanford, CA (4/6-8/2003).

“The Symmetric Group can be as Entangled as Possible, Almost,” JM Geremia, Caltech
Institute for Quantum Information Science seminar (invited) April 2003.

“Quantum Information and Quantum Control,” H. Mabuchi, Gordon Research Conference
on Quantum Information Science, Ventura, CA (3/24-28/2003).

“Experiments in Quantum Information Science -- What's the Point?” H. J. Kimble, Gordon
Research Conference, Quantum Information Science (invited), Ventura, CA (3/23/03).
“Quantum Entanglement and Non-locality: Semidefinite relaxations for problems in
Quantum Information Processing,” A. C. Doherty, Workshop on Robustness Analysis
Tools with Applications to the Biological and Physical Sciences, Kavli Institute of
Theoretical Physics, UC Santa Barbara, Santa Barbara, CA (3/21/03).

“Magnetic Microtraps for Cavity QED,” B. Lev, Research Seminar, NIST Gaithersburg,
Maryland (3/18/03).
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166.

167.

168.

169.

170.

171.

172.

173.
174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

“Putting Quantum Mechanics to Work,” A. C. Doherty, Department of Physics, University
of Oregon, Eugene, OR (3/6/03).

“Quantum Information Science with Single Atoms and Photons,” H. J. Kimble, APS
Annual Meeting (invited), Austin, TX (3/5/03).

“Experiments in Quantum Feedback,” H. Mabuchi, Quantum information sciences seminar,
MIT, Cambridge, MA (3/3/03).

“Quantum Physics in Light of Quantum Engineering,” A. C. Doherty, Department of
Physics, University of Michigan, Ann Arbor, MI (2/13/03).

“Cavity QED in the Present and Future,” J. Buck, Communications Research Laboratory,
Japan (2/13/03).

“State-Insensitive Trapping of Single Atoms in Cavity QED,” J. McKeever, SQuInT
Annual Meeting, Santa Fe, NM (2/7/03).

“Quantum Entanglement in the Symmetric Subspace,” JM Geremia, SQuInT Annual
Meeting, Santa Fe, NM, February 2003.

“Cavity QED in the Present and Future,” J. Buck, University of Tokyo, Japan (2/5/03).
“Magnetic Microtraps for Cavity QED,” B. Lev, Weekly Research Seminar, Ludwig-
Maximilians University, Munich, Germany (1/30/03).

“Magnetic Microtraps for Cavity QED,” B. Lev, Weekly Research Seminar, University of
Heidelberg, Germany (1/20/03).

“Physics with photons: from quantum to bio,” H. Mabuchi, Solid State Sciences Seminar
Series, Caltech, Pasadena, CA (1/15/03).

“State-Insensitive Trapping of Single Atoms in Cavity QED,” J. McKeever, Institute for
Applied Physics, University of Bonn, Germany (1/10/03).

“Quantum and classical control: theory & experiment,” H. Mabuchi, University of
Heidelberg Physics of Information symposium, Heidelberg, Germany (1/10/03).
“State-Insensitive Trapping of Single Atoms in Cavity QED,” J. McKeever, Institute for
Experimental Physics, University of Innsbruck, Austria (1/9/03).

“Tracking and trapping single atoms for quantum logic in cavity QED,” T. W. Lynn, 5"
Workshop on Laser Cooling, Awaji Yumebutai, Japan (1/8/03).

“Quantum Feedback and Measurement: Arranging for Theory to Visit the Laboratory,” A.
C. Doherty, US-Australia Workshop on Solid State and Optical Approaches to Quantum
Information Science (invited), Newport, Australia (1/7/03).

“Experiments in quantum feedback,” H. Mabuchi, Winter Colloquium on The Physics of
Quantum Electronics, Snowbird, UT (1/6/03).

“A New Physics/A New Control,” Invited presentation, A. C. Doherty, IEEE 2002
Conference on Decision and Control, Las Vegas, NV (12/13/02).

“Physics with photons: from quantum to bio,” H. Mabuchi, Joint Atomic Physics
Colloquium, Harvard University, Boston, MA (12/11/02).

“Control and Systems Theoretic Approaches to Quantum Physics,” A. C. Doherty, IEEE
2002 Conference on Decision and Control, Las Vegas, NV (12/10-13/2002).
“Experiments in real-time quantum feedback,” H. Mabuchi, IEEE 2002 Conference on
Decision and Control, Las Vegas, NV (12/10/02).

“Measurement and feedback in quantum systems,” H. Mabuchi, tutorial workshop on
control of quantum systems, IEEE 2002 Conference On Decision and Control, Las Vegas,
NV (12/9/02).
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188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

“Quantum Information Science -- The Promise, the Problems, and the Plumbing,” Invited
presentation, H. J. Kimble, Frontiers of Science and Technology: Quantum Computation
and Information, Lawrence Livermore National Laboratory, Livermore, CA (12/9/02).
“Quantum Control and Quantum Information Processing,” A. C. Doherty, Institute for
Quantum Information (1QI) Review, Caltech, Pasadena, CA (12/5/02).

“Quantum Measurement: Arranging for Theory to Visit the Laboratory,” Invited
presentation, A. C. Doherty, Atomic Physics Seminar, University of California, Berkeley,
CA (11/20/02).

“Complexity and robustness in quantum networks,” Invited presentation, H. Mabuchi,
Vanguard NextGens Conference, San Diego, CA (11/18/02).

“Local Hidden Variable Theories for Quantum States,” Invited presentation, A. C. Doherty,
Quantum Information and Cryptography Workshop, MSRI, Berkeley, CA (11/8/02).
“Quantum Dynamics with Single Atoms and Photons,” Invited presentation, H. J. Kimble,
5" Workshop on Nonlinear Dynamics and Chaos, Courant Institute of Mathematical
Sciences, NYU, New York, NY (10/25/02).

“Quantum Physics in Light of Quantum Engineering,” Invited presentation, A. C. Doherty,
Department of Physics, University of Oxford, Oxford, United Kingdom (10/21/02).
“Magnetic Microtraps for Cavity QE,” B. Lev, MURI Center for Quantum Networks
Review, Caltech, Pasadena, CA (10/16/02).

“Experiments in quantum feedback,” H. Mabuchi, Mechanical Engineering Seminar,
Caltech, Pasadena, CA (10/15/02).

“Quantum Information Theory for Quantum Networks,” A. C. Doherty, MURI Center for
Quantum Networks Review, Caltech, Pasadena, CA (10/15/02).

“The secret life of photons and atoms,” H. Mabuchi, MacArthur Fellows Reunion, St.
Louis, MO (10/10-13/2002).

“Strong coupling of motion and light in cavity QED,” Invited presentation, H. J. Kimble,
OSA Annual Meeting, Orlando, FL (10/2/02).

“Tracking, trapping, and training atomic motion in cavity QED,” Invited presentation, T.
W. Lynn, OSA Annual Meeting, Orlando, FL (10/1/02).

“Magnetic Microtraps for Cavity QED,” B. Lev, Physics Graduate Student Seminar,
Caltech, Pasadena, CA (10/1/02).

“Experimental and theoretical foundations of quantum and biochemical networks,” H.
Mabuchi, IPAM Workshop on Alternative Computing, UCLA, Los Angeles, CA (9/30/02).
“Physics with photons: from quantum to bio,” H. Mabuchi, Physics Colloquium, Yale,
New Haven, CT (9/27/02).

“Mathematics in nanoscale science and engineering,” H. Mabuchi, UCLA IPAM mini-
retreat, Malibu, CA (9/16/02).

“Quantum networks based on cavity QED,” H. Mabuchi, DARPA QuIST PI’s meeting,
Boston, MA (9/10-13/02).

“Experiments on quantum feedback,” H. Mabuchi, Decoherence Workshop, Ann Arbor,
MI (8/20-28/02).

“Adaptive Quantum Metrology and Control,” J. Stockton, Quantum Enabled Science and
Technology (QUEST) 2002 Summer Workshop, Santa Fe, NM (8/5-9/2002).

“Exact and Approximated Performance of Concatenated Quantum Codes,” B. Rahn, 6"
International Conference on Quantum Communication, Measurement and Computing
(QCMC’02), Cambridge, MA (7/22/2002).
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209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224,

225.

226.

227.

“Quantum Dynamics with Single Atoms and Photons,” Invited presentation, H. J. Kimble,
6" International Conference on Quantum Communication, Measurement and Computing
(QCMC '02), MIT, Boston, MA (7/22-26/2002).

“Adaptive qhuantum measurement and quantum feedback control,” Invited presentation, H.
Mabuchi, 6" International Conference on Quantum Communication, Measurements, and
Computing (QCMC’02), Boston, MA (7/18-23/2002).

“Quantum Measurements: Setting Up a Meeting Between Experiments and Theory,”
Invited presentation, A. C. Doherty, Physics Department Seminar, Yale University, New
Haven, CT (7/9/02).

“Distinguishing Separable and Entangled States,” Invited presentation, A. C. Doherty,
Department of Applied Mathematics and Theoretical Physics, Cambridge University,
Cambridge, United Kingdom (6/24/02).

“Quantum Measurement Theory Visits the Laboratory,” Invited presentation, A. C.
Doherty, BEC Group Seminar, Department of Physics, University of Otago, Dunedin, New
Zealand (6/4/02).

“Cavity QED with neutral atoms,” H. Mabuchi, NIST Workshop on Neutral Atom
Quantum Computing, Gaithersburg, MD (6/3-4/2002).

“Cavity QED with Strong Coupling -- Toward the Deterministic Control of Quantum
Dynamics,” Invited presentation, H. J. Kimble, Innsbruck, Austria (5/29/02).

“Magnetic Microtraps for Cavity QED,” B. Lev, Laser Seminar at the Max-Plank Institute
for Quantum Optics, Garching, Germany (4/18/02).

“Magnetic Microtraps for Cavity QED,” B. Lev, Seminar at the University of Innsbruck,
Innsbruck, Austria (4/12/02).

“Magnetic Microtraps for Cavity QED,” B. Lev, Seminar at the University of Trento,
Trento, Italy (4/11/02).

“Quantum information processing with atoms and photons,” Alex Kuzmich, Physics
Department Colloquium, Georgia Institute of Technology, Atlanta, GA (3/29/02).

“A Model Reduction Analysis of Concatenated Quantum Codes,” B. Rahn, CIMMS
Workshop, California Institute of Technology, Pasadena, CA (3/22/02).

“Measurement, feedback, and the quantum-classical transition,” H. Mabuchi, John Wheeler
Symposium, Princeton, NJ (3/16/02).

“Quantum Dynamics with Single Atoms and Photons,” Invited presentation, H. J. Kimble,
10" JST International Symposium on Quantum Computing, Nano-Science & Technology
for Implementation of Quantum Computers, Tokyo, Japan (3/12-14/2002).
“Distinguishing Separable and Entangled States,” A. C. Doherty, SQuInT *02 Annual
Meeting, Boulder, CO (3/9/02).

“Quantum Teleportation of Light Beams,” Tiancai Zhang, Kok Win Goh, Chin-wen Chou,
Peter Lodahl, and H. J. Kimble, poster presentation at SQuInT 02 Annual Meeting,
Boulder, CO (3/7-10/2002).

“Designing and Characterizing Photonic Band Gap Materials for Cavity QED,” J. M.
Geremia and J. Williams, SQuInT *02 Annual Meeting, Boulder, CO (3/8/02).

“Exact and Approximate Performance of Concatenated Quantum Codes,” B. Rahn, poster
presentation at SQuInT "02 Annual Meeting, Boulder, CO (3/7-10/2002).

“Single Atom Trapping in Cavity QED,” J. McKeever, poster presentation at SQuInT *02
Annual Meeting, Boulder, CO (3/7-10/2002).
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228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244,

245.

246.

“Multiscale science: from quantum to bio,” H. Mabuchi, Physics Colloquium, JILA,
Boulder, CO (2/21/02).

“Control theory and foundations of quantum mechanics,” H. Mabuchi, Mohammed Dahleh
Memorial Symposium at University of California at Santa Barbara (2/8/02).
“Distinguishing Separable and Entangled States,” A. C. Doherty, 1QI Seminar, Caltech,
Pasadena, CA (1/15/02).

“Multiscale science: from quantum to bio,” H. Mabuchi, Physics Research Conference at
the California Institute of Technology, Pasadena, CA (1/10/02).

“Distributed Compression of a Quantum Source,” A. C. Doherty, Australasian Conference
on Optics, Lasers and Spectroscopy (invited), Brisbane, Australia (12/3-6/01).

“Progress toward the Realization of Quantum Networks,” H. J. Kimble, the Quantum
Information conference at UCSB Institute for Theoretical Physics, Santa Barbara, CA
(12/3-7/2001).

“The quantum-classical transition on trial: is the whole more than the sum of the parts?” H.
Mabuchi, Caltech’s Watson Lecture Series (public lecture), Pasadena, CA (11/14/01).
“Quantum Measurements: arranging a meeting between theory and experiment,” A. C.
Doherty, Atomic Molecular and Optical Physics Group Seminar, University of Texas,
Austin, Austin, TX (11/9/01).

“Control Methods for Analysis of Concatenated Quantum Codes,” B. Rahn, Lloyd Group
Meeting, Massachusetts Institute of Technology (invited), Cambridge, MA (11/2/01).
“Cooling of a single atom in an optical trap inside a resonator,” J. McKeever, poster
presentation of the Optical Society of America Annual Meeting/ Interdisciplinary Laser
Science XVII (ILS-XVII) Conference, Long Beach, CA (10/18/01).

“Sensitivities of atom-cavity microscopes,” K. Birnbaum, poster presentation at the Optical
Society of America Annual Meeting/ Interdisciplinary Laser Science XVII (ILS-XVII)
Conference, Long Beach, CA (10/18/01).

“Dynamics of Single-Atom, Single-Photon Trapping in Cavity QED,” T. Lynn, poster
presentation at the Optical Society of America Annual Meeting/ Interdisciplinary Laser
Science XVII (ILS-XVII) Conference, Long Beach, CA (10/18/01).

“Quantum teleportation of quadrature amplitudes,” T. Zhang, Optical Society of America
Annual Meeting/ Interdisciplinary Laser Science XVII (ILS-XVII) Conference, Long
Beach, CA (10/17/01).

“Determining optimal microsphere sizes for cavity QED,” J. R. Buck, Optical Society of
America Annual Meeting/ Interdisciplinary Laser Science XVII (ILS-XVII) Conference.
Long Beach, CA (10/17/01).

“Entangled atoms and photons,” A. Kuzmich, New Laser Scientists Conference (NLSC —
2001)/ Optical Society of America Annual Meeting 2001(invited), Long Beach, CA
(10/12/01).

“Quantum Information Science — The Promise, the Problems, and the Plumbing,” H. J.
Kimble, invited presentation at Shanxi University, Taiyuan, China (10/9/01).

“Cavity QED with Strong Coupling,” H. J. Kimble, invited presentation at Shanxi
University, Taiyuan, China (10/9/01).

“Experiments in quantum feedback,” H. Mabuchi, Physics Colloquium at University of
California, Berkeley, Berkeley, CA (10/8/01).

“Micromagnetic Traps for Cavity QED,” B. Lev, The Quantum Technology Seminar at Los
Alamos National Laboratory (invited), Los Alamos, New Mexico (9/19/01).
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247.

248.

249.

250.

251.

252.

253.

254,

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

“Quantum measurement and real-time feedback,” H. Mabuchi, Nonlinear Optics and
Lasers Gordon Research Conference, New London, NH (7/29/01).

“Quantum measurement and feedback,” H. Mabuchi, SIAM Meeting on Control and its
Applications (plenary), San Diego, CA (7/12/01).

“Closed-Loop Quantum System Identification,” JM Geremia, Caltech Institute for
Quantum Information Science Seminar (7/01).

“Real-time feedback for quantum measurement and control,” H. Mabuchi, Atomic Physics
Gordon Research Conference, Williamstown, MA (6/19/01).

“Dynamics of Single-Atom, Single-Photon Trapping in Cavity QED,” T. Lynn, poster
presentation at the Eighth Rochester Conference on Coherence and Quantum Optics
(CQO8), Rochester, NY (6/14/01).

“Cavity QED with Strong Coupling,” H. J. Kimble, Eighth Rochester Conference on
Coherence and Quantum Optics (CQOS8) (invited), Rochester, NY (6/12-17/2001).
“Cavity QED with Cold Atoms,” H. J. Kimble, ICOLS-XV Conference(invited), Snowbird,
UT (6/10-12/2001).

“Real-time feedback for quantum measurement and control,” H. Mabuchi, Canadian
Institute for Advanced Research (CIAR) Workshop on Quantum Computation, Toronto,
Canada (5/19-20/2001).

“Real-time feedback for quantum measurement and control,” H. Mabuchi, 1** Summer
School and Conference on Spintronics and Quantum Information (invited), Maui, HI
(5/16/01).

“Cavity QED and quantum measurement,” H. Mabuchi, 1** Summer School and
Conference on Spintronics and Quantum Information (invited tutorial), Maui, HI (5/15/01).
“Quantum feedback and adaptive measurement,” H. Mabuchi, Conference on Lasers and
Electro-Optics/Quantum Electronics and Laser Science (CLEO/QELS), Baltimore, MD
(5/10/01).

“Science and Technology at the quantum-classical interface,” H. Mabuchi, Simon Fraser
University (Physics Colloguium), Vancouver, Canada (3/16/01).

“Science and Technology at the quantum-classical interface,” H. Mabuchi, University of
British Columbia (Physics Colloquium), Vancouver, Canada (3/15/01).

“Quantum networks based on cavity QED,” H. Mabuchi, NEDO Workshop on Quantum
Functional Devices (invited guest lecture), Tokyo, Japan (3/8/01).

“Adaptive measurement of quantum phase,” H. Mabuchi, Fourth Annual Meeting of the
Southwest Quantum Information and Technology Network (invited), Pasadena, CA
(3/4/01).

“Science and Technology at the quantum-classical interface,” H. Mabuchi, UCSB (Physics
Colloquium), Santa Barbara, CA (1/23/01).

“Quantum networks based on cavity QED,” H. Mabuchi, First International Conference on
Experimental Implementation of Quantum Computation (invited), Sydney, Australia
(1/19/01).

“Robust Control in the Quantum Domain,” A. C. Doherty, 39" IEEE Conference on
Decision and Control, Sydney, Australia (12/12-15/2000).

“Atoms in Optical Cavities,” H. J. Kimble, The Quantum Theory Centenary, Berlin,
Germany (12/11/00).

“Real-time measurement and feedback in quantum systems,” H. Mabuchi, Laboratory for
Information and Decision Systems Colloquium, MIT (11/28/00).
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270.

271.

272.

273.

274.

275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

286.

“What is an observable?”” John Preskill, IQl Workshop on quantum computation and
information (11/15/00).

“Cavity QED with Single Atoms and Photons — Toward Deterministic Control of Quantum
Dynamics,” H. J. Kimble, JILA/NIST Colloquium, Boulder, CO (11/8/00).

“Quantum Measurement, feedback, and nonlinear dynamics in cavity QED,” H. Mabuchi,
Northern New Mexico Complexity, Entropy and Physics of Information (CEPI) Seminar,
Albuquerque, NM (11/1/00).

“Photonic crystal microcavities for strong coupling between an atom and the cavity field”,
J. Vuckovic, M. Loncar, H. Mabuchi and A. Scherer, Proceedings of the LEOS 2000, pp.
840-841, Rio Grande, Puerto Rico (11/00).

“Modal analysis of waveguides based on a triangular photonic crystal lattice,” M. Loncar,
J. Vuckovic and A. Scherer, Proceedings of the LEOS 2000, Rio Grande, Puerto Rico
(11/00).

“Quantum Teleportation” and “Cavity QED,” H. J. Kimble, Chaos, Decoherence and
Quantum Entanglement (Pan-American Advanced Study Institute), Ushuaia, Argentina
(10/9-20/2000).

“Quantum clock synchronization and quantum error correction,” John Preskill, NASA-
D.0O.D. Workshop on Quantum Information and Clock Synchronization (9/25/00).
“Cavity QED with Cold Atoms,” H. J. Kimble, Mysteries, Puzzles, and Paradoxes in
Quantum Mechanics, Garda Lake, Italy (9/19/00).

“Trapping and Tracking Single Atoms and Single Photons,” A. C. Doherty, U.S./Japan
Joint Seminar “Coherent Quantum Systems”, Newport, Rhode Island (9/17-21/2000).
“Real-time measurement and feedback in quantum systems,” H. Mabuchi, Optical sciences
colloquium, University of Arizona, Tucson, AZ (9/14/00).

“Cavity QED with Trapped Atoms,” H. J. Kimble, European Conference on Lasers and
Electro-optics/International Quantum Electronics Conference 2000 (CLEO-Europe/IQEC
2000), Nice Acropolis, France (9/14/00).

“Information and the quantum—classical transition,” H. Mabuchi, Physics colloquium,
Harvey Mudd College, Pomona, CA (9/12/00).

“Quantum networks based on cavity QED,” H. Mabuchi, Canadian Institute for Advanced
Research Workshop on Quantum Computation, Calgary, Canada (9/1-5/2000).

“Quantum error correction and fault tolerance,” John Preskill, Quantum Computing
Symposium sponsored by ARO, Baltimore, MD (8/28/00).

“The Quantum Internet — Distributed Quantum Networks for Computation &
Communication,” H. J. Kimble, Quantum Computing Symposium sponsored by ARO,
Baltimore, MD (8/28/00).

“Information dynamics in cavity QED,” H. Mabuchi, American Chemical Society National
Meeting, Washington D.C. (8/20-24/2000).

“Real-time Tracking and Trapping of Single Atoms in Cavity QED,” H. J. Kimble, XVII
International Conference on Atomic Physics (ICAP), Florence, Italy (6/00).

“Quantum Communication and Memory MURI Kickoff Meeting,” H. Mabuchi, Program
review at the D.O.D. in Ft. Monmouth, NJ (6/13-14/2000).

“Encoding a qubit in an oscillator,” John Preskill, MURI Kickoff, Fort Monmouth, NJ
(6/13-14/2000).

“Real-Time Tracking and Trapping of Single Atoms in Cavity QED,” H. J. Kimble,
Institute of Physics and Astronomy, Aarhus University, Aarhus, Denmark (6/10/00).
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287.

288.

(2)

(3)

“Codes for continuous quantum variables,” John Preskill, Aspen 2000 Workshop --
Quantum Information and Computation (6/6/00).

“Real-time measurement and feedback in cavity QED,” H. Mabuchi, Quantum information
sciences colloquium, UCSB, Santa Barbara, CA (6/2/00).

Scientific Personnel

Faculty, supported by this grant, who are members of the National Academy: H. J.
Kimble

Number of Graduate Students Supported: 33

Mark L. Adams, Charlene Ahn, Michael Armen, John Au, Paul Barclay, David N. Barsic,
Andreea Boca, A. David Boozer, Joseph R. Buck, Chin-wen Chou, Kok Win Goh, Kovid
Goyal, Laurence C. Gunn, Jim Harrington, Asa Hopkins, Ali Husain, Shwetank Kumar,
Andrew Landahl, Benjamin Lev, Marko Loncar, Jason McKeever, Russell Miller, Terrell
D. Neal, Tracy Northup, Benjamin Rahn, Federico Spedalieri, Kartik Srinivasan, John
Stockton, Ben Toner, Ramon van Handel, Jelena VVuckovic, Elizabeth Wilcut and
Tomoyuki Yoshie

Number of Post Doctorates Supported: 15

Takao Aoki, Warwick Bowen, Eyal M. Buks, Andrew C. Doherty, Luming Duan, J. M.
Geremia, Alex Kuzmich, Chungsok Lee, Debbie Leung, Hanns-Christoph Naegerl,
Robert Raussendorf, Dan Stamper-Kurn, Steven van Enk, Jon Williams and Tiancai
Zhang

Number of Faculty Supported: 6

Hideo Mabuchi, H. J. Kimble, John Preskill, Axel Scherer, Oskar Painter, Mladen Barbic
Number of PhDs Awarded: 16

Names of personnel receiving PhDs: Mark L. Adams, Charlene Ahn, David N. Barsic,
Andreea Boca, A. David Boozer, Joseph R. Buck, Jim Harrington, Ali Husain, Andrew
Landahl, Benjamin Lev, Marko Loncar, Jason McKeever, Federico Spedalieri, Kartik
Srinivasan, Jelena Vuckovic and Tomoyuki Yoshie.

Number of Undergraduate Students Supported: 6

Wei Lien Dang, Nathan E. Flowers-Jacobs, Arjun Menon, Nicolay M. Tanushev,
Chenyang Wang, Ernest C. Yeung

Prizes, Fellowships and Awards —

H. J. Kimble was awarded the Julius Edgar Lilienfeld Prize by the American Physical
Society.

Hideo Mabuchi, Office of Naval Research Young Investigator Award, 2000 — 2003
John D. and Catherine T. MacArthur Foundation Fellowship, awarded June 2000
Discover magazine’s “20 Scientists to Watch in the Next 20 Years”, October 2000
Office of Naval Research Young Investigator Award, 2000 - 2003

Classroom Teaching Award (Graduate Student Council, Caltech) 2000

Report of Inventions
Number of Patents Disclosed: One
Number of Patents Awarded: One

“Photonic crystal microcavities for strong coupling between an atom and the
cavity field and method of fabricating the same,” A. Scherer, J. Vuckovic,
M. Loncar, and H. Mabuchi (US Patent #6,466,709 B1, issued 15 October 2002)
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(4)  Scientific Progress and Accomplishments

During the MURI performance period we completed a diverse portfolio of world-class research
projects. We made remarkable progress in all major topics encompassed by the defining vision
of our “Quantum Networks” MURI Center: demonstration of elementary quantum network
protocols via cavity QED, development of integrated quantum nodes based on atom chips and
photonic bandgap structures, and advancing quantum information theory. What follows is an
executive summary of our main accomplishments in core areas of MURI research.

Quantum network protocols via cavity QED

The results described in this section are mainly attributed to the group of Jeff Kimble and to
Luming Duan; see our cumulative publication list for details.

A long-standing ambition in the field of cavity quantum electrodynamics (QED)

has been to trap single atoms inside high-Q cavities in a regime of strong coupling. Diverse

avenues have been pursued for creating the trapping potential for atom confinement, including
additional far off-resonant trapping beams, near-resonant light with mean intracavity photon
number ~1, and single trapped ions in high-finesse optical cavities. A critical aspect of this
research is the development of techniques for atom localization that are compatible with strong
coupling in cavity QED, as required for the realization of various quantum network protocols.

Early in the MURI performance period we reached a significant milestone in our quest to
trap and cool single atoms in cavity QED: we achieved extended trapping times for single atoms
in a cavity while still maintaining strong coupling, with a trapping potential for the center-of-
mass motion that is largely independent of the internal atomic state, and demonstrated a scheme
that allows continuous observation of trapped atoms by way of the atom-field coupling. More
specifically, we recorded trapping times up to 3s for single Cs atoms stored in an intracavity far-
off resonance trap (FORT), which represented a 100-fold improvement beyond the sole previous
realization of trapping in cavity QED (also by Kimble’s group, in 1999). We also continuously
monitored trapped atoms by way of strong coupling to a probe beam, including observations of
trap loss atom by atom over intervals ~1s. These measurements incorporated auxiliary cooling
beams, and provided the first realization of cooling for trapped atoms strongly coupled to a
cavity. Our protocols are enabled by the choice of a “magic” wavelength for the FORT, for
which the relevant atomic levels are shifted almost equally, thereby providing significant
advantages for coherent state manipulation of the atom-cavity system.

Also early in the MURI period, we proposed a method to implement quantum information
processing in high-Q cavities with a single trapped but non-localized atom. Our method is based
on adiabatic passage, which makes the relevant dynamics insensitive to the randomness of the
atom position with an appropriate interaction configuration. We validated our protocol with both
approximate analytical calculations and exact numerical simulations.

In the middle years of the MURI we exploited the new technical tools described above in a
series of important demonstrations of the practical utility of strong coupling. We realized a one-
atom laser in the regime of strong coupling, generated single photons
“on-demand” from one atom trapped in a cavity, and developed a protocol for real-time
determination of the number of trapped atoms in our cavity. We then directed our attention to
the development of a new set of technical tools for cavity-QED-based Quantum Information
Science. In particular we developed non-invasive methods for characterizing and tuning the local
environment of a trapped intracavity atom, such as background magnetic fields, trapping
potential fluctuations, and polarization fluctuations of the FORT beam. We also developed “in
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situ” Doppler and blue-detuned Sisyphus cooling methods for reducing the radial motion of a
trapped intracavity atom, as well as a laser system for driving Raman transitions between
hyperfine ground states of the atom. This latter capability is central to many proposed schemes
for quantum information processing in cavity QED.

In the final years of our MURI effort we achieved two more major advances including the
first demonstration of a complete protocol based on an individual intracavity trapped atom and a
demonstration of cavity-mediate strong coupling between flying qubits. The Kimble research
group reported observations of the vacuum Rabi spectrum for one trapped atom, which marks a
major milestone for cavity QED. Previous experiments on the vacuum Rabi spectrum have
required integration of signals collected from large numbers of atoms in order to accumulate
sufficient signal-to-noise ratio, but the new work by Kimble et al. exploits their unique capability
for non-invasive atom trapping. Their experiment involved a sequence of trapping, cooling,
probing, and re-cooling stages. It is highly significant that individual trapped atoms could be
reset into a “data-ready” state multiple times to combat decoherence. The Kimble group has also
recently reported the observation of photon blockade in the transmission of light through a cavity
containing one strongly-coupled atom. This effect, which is analogous to the Coulomb blockade
effect in microelectronics, is a consequence of single-photon optical nonlinearity, and provides a
basis for devices such as deterministic single-photon generators and possibly quantum logic
gates for flying qubits.

Development of integrated quantum nodes

The results described in this section are main attributable to the groups of Axel Scherer, Oskar
Painter and Hideo Mabuchi.

During the early years of our MURI effort, our efforts in the area of integrated quantum
nodes proceeded separately along two main fronts. The first was the development of magnetic
microtraps suitable for confining atoms in close proximity to a dielectric microcavity; the second
was work on developing dielectric microcavities with sufficiently high Q-factor for cavity QED
with resonance frequencies near the D2 line of atomic Cs. Much of our early work on magnetic
microtraps focused on improving loading protocols for transferring Cs atoms from macroscopic
“mirror MOT” traps into lithographically defined microtraps. This necessitated some detailed
work on the characterization of light-induced collisions that limit the transfer efficiency. We
found excellent agreement between our measurements and an atomic physics model based on
values for scattering cross-sections that were previously measured by researchers interested in
Bose-Einstein Condensation. These experimental results give us confidence that we could design
optimal loading protocols to maximize the efficiency and phase-space density of atom transfer
into magnetic microtraps. Early on we also investigated the possibility of using lithographically-
patterned permanent magnets for atom trapping, which has great appeal because such traps
would not need to dissipate significant heat while operating. We specifically used electron beam
lithography to pattern the surface of a commercial hard disk platter, and demonstrated (utilizing a
mirror MOT) that cold atoms bounce off of its magnetic field pattern without detectable
perturbations. We later went on to propose a concrete scheme for combining such an atom mirror
with metallic pads to create stable magnetoelectrostatic microtraps for chip-scale cavity QED.
We are currently working to fabricate and demonstrate such microtraps.

Our early work on dielectric microcavities focused on defect resonators within InGaAs
photonic crystals, even though this material was known to be unsuitable for work with Cs atoms,
mainly because it was a known material system in which to tackle the primary question of
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whether the Q-factors of photonic crystal cavities could ever be made sufficiently high to be of
interest for cavity QED with strong coupling. There were some promising advances at the time,
but we ultimately had to switch to a different material (SiNy) in order to achieve compatibility
with atomic Cs. In addition to working to raise the Q-factors of fabricated microcavities, we
explored the inclusion of quantum wells and quantum dots and created low-threshold power
photonic crystal lasers. This work was eventually “spun off” from the MURI program and
continues to provide the basis for work on photonic-crystal based optical information processing
and for ultra-sensitive liquid phase sensor devices.

In the middle years of our MURI effort, we turned our attention to formulating a proof-
of-principle demonstration of strong coupling between magnetically confined neutral atoms and
a photonic bandgap defect resonator. This has proven to be a highly challenging undertaking
which has only now come close to fruition. Initially we continued to pursue two main lines of
work: construction of an appropriate “atom chip” for loading and guiding of cold atoms to the
photonic bandgap (PBG) structure, and adaptation of the PBG-resonator designs from InGaAs to
GaAs to make them compatible (or so we thought) with the resonant optical wavelengths for
atomic Cs.

We successfully fabricated an atom chip design that incorporates all the features necessary for an
initial experiment on coupling magnetically-guided atoms to a PBG cavity. Small-scale wires,
used in the final stages of compression and guiding, were produced by lithographic patterning of
gold on sapphire. Intermediate loading and compression was accomplished using medium-scale
wires that we cut into a copper clad Teflon circuit board using a computer-controlled mill. Initial
loading from a background Cs vapor required the transient use of a large copper wire underneath
the circuit board. We used this atom chip to optimize our laser cooling protocols for transferring
Cs atoms from a room-temperature background vapor to magnetostatic guiding elements on the
chip, which we planned to use to deliver cold atoms to the vicinity of an on-chip PBG cavity.
On the PBG side of our effort we developed a novel configuration for coupling an optical fiber-
taper to a PBG defect cavity, via a PBG waveguide. Using such a setup, we successfully
demonstrated laser coupling to and spectroscopic characterization of a PBG defect cavity
fabricated in InGaAs. We found an excellent quality factor Q~48,000 and achieved an input-
output coupling efficiency of nearly fifty percent, which would be more than sufficient for
demonstration experiments with magnetically guided atoms.

In order to transfer these results to a material system suitable for cavity QED with Cs atoms,
we first spent over a year attempting to achieve comparably high Q-factors with AlGaAs
photonic bandgap structures. We ultimately realized that there were oxidation and impurity
issues endemic to AlGaAs, such that it would never be a good material to use. Fortunately, we
finally found the right material system in SiNy (Silicon Nitride), although we had to take a bit of
a step backward to using microdisk resonators rather than PBG defect resonators because the
complex etching protocols required for fabricating the latter geometry had not yet been
optimized in SiNx. Our focus then turned to task of functionally integrating our atom chip with
the microcavity and optical-fiber coupling structures. Doing this has been far more challenging
than we at first could appreciate, largely because our previous work on the photonic bandgap
tapered-fiber couplers had not been done under vacuum. We first successfully debugged several
major problems involving thermal management in the fiber tapers and mechanical stability of the
couplers, developing along the way a novel “micro-joint” technique for rigidly and permanently
attaching the fiber taper in an optimally coupled position. We are now using this technique to
achieve simultaneous coupling to arrays of ~10 microdisk resonators on a single chip, which we
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believe will in the long run facilitate the creation of multi-cavity quantum nodes, and in the short
run help to alleviate an unfortunate Cs-exposure issue that we recently discovered. During our
first attempt to run a complete experiment on coupling chip-guided atoms to a semiconductor
microcavity, we found that exposure of the cavity to background Cs vapor resulted in gradual but
strong shift of its resonance frequency. This shift seems to saturate at a magnitude of about 0.2
nm and is not accompanied by any degradation of the microcavity Q-factor. This is highly
inconvenient because it takes the microcavity out of our achievable tuning window for coupling
to the Cs D2 line, and prevented our first attempt at the experiment from succeeding. At this
point in time we are in the final stages of preparing a second attempt, in which we will anticipate
this Cs-exposure shift when we trim the initial resonance frequencies of our SiNx microdisks,
and in which we will employ an array of ten microdisks (as described above) with a range of
resonance frequencies just in case the saturation shift is different this time around. We hope to
be able to report a successful demonstration of chip-scale cavity QED within the next few
months.

Advancing quantum information theory

The results presented in this section are mainly attributable to John Preskill and his group, MURI
visitors, Rob Raussendorf, and Andrew Doherty.

Our early theoretical activities focused on the accuracy threshold for fault-tolerant quantum
computing using topological codes and the security of quantum key distribution with imperfect
sources and detectors. Topological codes are well suited for robust storage and processing of
quantum information because the code's check operators can be efficiently measured with local
quantum gates. We studied the order-disorder transition for these codes, which corresponds to
the accuracy threshold. It was shown that encoded quantum states are arbitrarily well protected
in the limit of a large code block provided that the probability of error in each syndrome bit
measurement is below three percent.

If implemented with perfect equipment, quantum key distribution is provably secure against
arbitrary eavesdropping attacks. But how do flaws in the source or detector affect security? We
proved that security is robust against arbitrary flaws in the source as long as the detector is
perfect and the source does not leak to the eavesdropper any information about what basis is used
in the protocol. The proof, which uses a new and remarkably simple method, also applies to the
case where the source is perfect and the detector has arbitrary flaws (a case treated earlier by
Mayers). We showed that security is robust against flaws (such as the emission of weak
coherent states instead of single-photon states) that reveal a little bit of information about the
basis.

We subsequently developed a new method for analyzing security, in which the classical coin
flips that determine the basis in which the signals are sent and detected are treated quantumly.
The advantage of this new viewpoint is that the basis dependence of flaws in the equipment can
be characterized according to how much the adversary's attack disturbs the coins. Using the new
method, unconditional security can be proven for generic small flaws in the source and detector.
In related work, we also studied the impact of local conservation laws (superselection rules) on
guantum games. We say that a game is secure if a cheater who breaks the rules is unable to alter
the outcome of the game. Naively, it seems that in an invariant world subject to a superselection
rule, a cheater would have less power than in the unrestricted world, not subject to a
superselection rule. But on the contrary, we showed that any cheating strategy in the unrestricted
world can be accurately simulated in the invariant world. By explaining how the physics of the
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invariant world (subject to the conservation law) can be simulated in the unrestricted world and
vice versa, we clarified the physical implications of superselection rules, which have a central
role in modern quantum field theory. We also analyzed how quantum protocols can be
composed without compromising security. We showed in particular that classical authentication
can be securely composed with quantum key distribution. This result means that a key generated
in a round of key distribution can be used safely to authenticate further rounds. Continuing work
now focuses on formulating more flexible definitions of security that will allow composability
theory to be applied to a broader family of quantum protocols.

More recently, we have shown that any strong quantum coin flipping protocol is susceptible
to same-sided bias — by cheating, one player or the other can force the coin to come up heads
with probability ~0.707. Student Carlos Mochon found a weak coin tossing protocol in which the
cheater cannot force a win with probability above 0.692; he also found improved bounds on the
cheat sensitivity of quantum bit commitment protocols. In work currently in progress, the
methods used to prove these results are being extended to a general theory of two-player
quantum games. It is hoped that this theory will resolve the long-standing question whether there
is a weak quantum coin tossing protocol with arbitrarily small bias. Student Ben Toner, together
with visiting scholars Hoyer, Cleve, and Watrous, studied the power of entanglement in two-
party cooperative games. They showed that shared entanglement profoundly alters the soundness
of two-prover interactive proof systems, and formulated generalizations of Tsirelson's inequality,
which provide upper bounds on quantum nonlocality.

Robert Raussendorf, Sergey Bravyi, and student Jim Harringon studied a quantum phase
transition that occurs in a three-dimensional cluster state subject to noise. Using topological
encoding methods, they estimated the (nonzero) critical “temperature” at which the entanglement
length changes from infinite to finite. In related work, Raussendorf has developed protocols for
purification of cluster states that can be used to achieve fault tolerance in the one-way quantum
computer. Student Charlene Ahn studied the blowup in circuit depth that occurs when an ideal
quantum circuit is simulated using noisy quantum gates. By combining topological coding with
methods for studying the robustness of classical cellular automata, she showed that if the ideal
circuit has size L, the blowup in depth can be a factor of order log(log(L)); this is a big
improvement over the best previously known result (a factor polynomial in log(L)). Student Jim
Harringon developed fault-tolerant schemes for the case in which all gates (both quantum and
classical) are local in space. He obtained analytic and numerical estimates of the accuracy
threshold for this case, which had never been carefully analyzed before. The analytic result
established a critical noise rate order 10°°, but the numerical results indicate that the actual error
threshold is better by many orders of magnitude.

Andrew Doherty, in joint work with Pablo Parrilo and student Federico Spedalieri, developed
a new approach to characterizing entanglement using the theory of semi-definite programming
realizations. This ties the quantum information-theoretic topic of separability testing to a host of
other NP-hard problems such as minimization, number partitioning and set non-inclusion.

(5) Technology Transfer -- None.
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Suppression of Spin Projection Noise in Broadband Atomic Magnetometry

JM Geremia,* John K. Stockton, and Hideo Mabuchi
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We demonstrate that quantum nondemolition (QND) measurement, combined with a suitable
parameter estimation procedure, can improve the sensitivity of a broadband atomic magnetometer
by reducing uncertainty due to spin projection noise. Furthermore, we provide evidence that real-
time quantum feedback control offers robustness to classical uncertainties, including shot-to-shot
atom number fluctuations, that would otherwise prevent quantum-limited performance.

PACS numbers: 07.55.Ge, 03.65.Ta, 42.50.Lc, 02.30.Yy

Atomic magnetometers estimate the magnitude of an ex-
ternal magnetic field by observing Larmor precession in
a spin-polarized atomic sample [1]. A canonical proce-
dure for “detecting” a magnetic field oriented along the
y-axis (in a laboratory-fixed coordinate system) operates
by aligning the magnetic moments of N spin-f atoms
along the z-axis. The resulting polarized atomic state is
characterized by its net magnetization, F = (F), where
the quantum operator, f‘, corresponds to the total angu-
lar momentum of the collective atomic system.

Under the influence of the field, b = By, the atomic
magnetization precesses from its initial value,

dF(t) = =y (F(t) x b)dt, F(0) = hFx, (1)
where F' = N f for N spin-f atoms and the Larmor fre-
quency, wi, = vB, is determined by the gyromagnetic
ratio, v. These dynamics confine the mean spin vector
to the zz-plane such that, in the small-time (and small-
decoherence) limit appropriate for discussing detection
thresholds, the z-component of the atomic magnetization
is given by F,(t) = yBFt, t < wj'.

The magnetic field can thus be inferred from the slope
of F, during its small-angle Larmor precession,

-1 [(F,) 1,
B=— = —F <t . 2
7F< t > yE T Ost<r @

Uncertainty in the field estimation, AB, results from
various sources of error that can be divided into three
classes: (1) spin projection noise [2], or quantum un-
certainty in the initial orientation of F due to non-
commutativity of the quantum operators, Fy, Fy and F,,
(2) finite signal to noise in the physical measurement used
to determine F,, and (3) classical parameter uncertain-
ties in Eq. (2), namely fluctuations in F' that arise from
shot-to-shot variance in the atom number, V.

Here we demonstrate that, given a quantum nonde-
molition (QND) measurement of F, with a finite signal
to noise ratio, degradation of the field sensitivity due to
projection noise can be minimized by an estimation pro-
cedure [3, 4] that exploits the spin-squeezing produced by
the QND measurement [5-7]. However, we find that the
simplest procedure for suppressing spin projection noise

is susceptible to classical parameter uncertainty. Incor-
porating real-time quantum feedback control into the es-
timation procedure alleviates this source of error.

We consider a QND measurement of F, performed by
quantum-limited detection of an optical field scattered
by the atomic system [7, 8]. Such a measurement is de-
scribed by the continuous photocurrent,

y(t) = VME,(t) + ((b), 3)

where the ((t) are Gaussian stochastic increments that
reflect detection (optical) noise.  The measurement
strength, M, relates the mean value of the photocurrent
to the z-component of the collective atomic spin [7].
Our procedure [3] based on quantum Kalman filter-
ing [9, 10] estimates the magnetic field from the aver-
age slope, §'(7), obtained by regressing the QND pho-
tocurrent over the interval 0 < ¢t < 7. Fig. 1 schemati-
cally illustrates this procedure. Beginning from the spin-
polarized state at ¢ = 0, the measurement reveals both
the slope due to (small angle) Larmor precession and an
offset due to the initial uncertainty in the orientation
of F. This spin projection noise offset is randomly dis-
tributed with variance AF2(0) ~ F/2 in an ensemble of
measurement trajectories, according to the Heisenberg-
Robertson relation, AF2AF2 > 1p°|(Fy)|. Freedom to
absorb the non-zero value of F,(0) into the regression in-
tercept rather than the slope minimizes the impact of the

quantum projection noise on the estimated field, B.
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FIG. 1: Atomic magnetometry based on continuous QND
measurement and quantum filtering enables field estimation
procedures that suppress projection noise of the initial atomic
state (simulated data).
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FIG. 2: Schematic of our apparatus for broadband atomic
magnetometry based on continuous QND measurement and
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Our single-shot magnetic field estimate is given by

!
» Yr
B(r) = —/—/=,
(7) SFVIT
where 7/ is the photocurrent slope obtained by linear
regression of y(t) over the time interval, 0 < ¢t < 7. In

principle, field uncertainty is limited only by statistical
regression error [3],

T<w (4)

1 [3A¢2

B(T):WTT 7 (5)

where A¢2 = E[L [ ((t)dt]? is the integrated noise vari-
ance in a 1/7 bandwidth. The unitless QND signal to
noise ratio, SNR = v M /A(;, (both M and AC? have
units proportional to frequency) is determined by exper-
imental parameters, such as the optical probe power and
detuning, and the scattering interaction strength [7].
The uncertainty of our optimal estimator, Eq. (5),
should be compared to that of a procedure which can-
not distinguish between Larmor precession and the initial
spin projection noise. Such is the case for steady-state
atomic magnetometers [11, 12] where the uncertainty,

2 AC2
= ——/AF? a
S\ ARO + S (6)

AB(7)

retains a contribution from both AF2(0) ~ F/2 and the
optical shotnoise. In the limit of infinite signal to noise
this expression saturates to the so-called shotnoise mag-
netometry limit [11]. Eq. (6) corresponds to an estima-
tion procedure that averages the photocurrent,

2 T
Br) = o [ v g

rather than determining its slope. It is readily shown that
steady-state atomic magnetometers operate in a manner
logically equivalent to this type of direct averaging.

Our estimation procedure, which suppresses projection
noise, requires precise knowledge of the QND measure-
ment sensitivity F'v/M. Shot-to-shot variation in N pro-
duces fluctuations, AF, in the length of F that directly
propagate into the field estimation as a proportional er-
ror, ABp = §AF/(yFV/M) ~ B(AF/F). A similar
argument applies to M. While relative parameter uncer-
tainties introduce essentially no error when B = 0, they
can completely mask the improved resolution provided
by spin-squeezing when B # 0.

To reduce the effects of classical parameter uncer-
tainty, our magnetometer is implemented according to
the closed-loop methodology [4] illustrated in Fig. 2. The
QND photocurrent, y(t), drives a precision y-axis magnet
in negative feedback configuration to stabilize F), to zero
[8, 13]. In the presence of an external magnetic field, the
controller imposes a compensating field, be(¢) ~ —B(t)y
to prevent the atomic magnetization from precessing out
of the xy-plane. The magnetic field is estimated from the
time-averaged feedback signal,

B(r) = 1 /OT B.(t) dt, (8)

rather than the photocurrent. Since the magnetometer
always operates with F, ~ 0, the closed-loop estimation
is reasonably immune to atom number fluctuations.

We have recently demonstrated QND detection and
real-time quantum-limited feedback control with an ap-
paratus similar to that in Fig. 2 [7, 13]. Our spin sys-
tem is provided by the 62S;,5(F=4) ground state hy-
perfine manifold in '33Cs. We obtain samples with
N ~ 10' — 10 atoms at a temperature of T = 10
pK via dark spontaneous-force optical trapping. Shot-
to-shot fluctuations in N are <20%. Spin polariza-
tion along the z-axis is achieved by optical pumping on
the 62S; /o(F=4)—62P35(F'=4) hyperfine transition and
continuous QND measurement of F, is implemented by
balanced polarimetric detection of a laser detuned from
the 4—5 transition by A = 550 MHz.

Background magnetic fields are continually nulled us-
ing a combination of large (1 m) external three-axis
Helmholtz coils and smaller computer controlled trim-
coils. The experiment is synchronized with respect to
the 60 Hz line cycle, and we estimate the resulting shot-
to-shot field fluctuations in a 100 pus measurement win-
dow to be ~850 nG. Atomic decoherence is <6% over
the t = 100 us measurement trajectories we consider
[7]. Further characterization of our state preparation,
atom number, transverse spin relaxation, spin-squeezing,
and quantum noise limited feedback performance can be
found in Ref. [13]. A detailed procedure for determining
the degree of atomic polarization and the QND signal to
noise ratio can be found in Ref. [7].
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We began by operating our magnetometer with feed-
back disabled in order to characterize the adverse effects
of classical parameter uncertainty. Fig. 3 shows example
open-loop field estimations performed using the proce-
dure in Eq. (4) for two different magnetic fields, B = 0
and B = 10 uG. When the QND measurement is initi-
ated at t = 0 by opening the probe laser shutter [refer
to Fig. 2] the photocurrent establishes an average offset
[inset of Fig. 3(a)] that is randomly distributed in an
ensemble of similar trajectories. Our ability to observe
this random offset reflects sufficient signal to noise in our
QND measurement to produce squeezing [3, 7, 13].

Since B = 0 in Fig. 3(a), the atoms do not undergo
Larmor precession and the slope of y(¢) is, as expected,
i’ ~ 0. As described above, statistical fluctuations due
to optical noise require that this slope be obtained by
regression, as filtering the photocurrent reduces the sta-
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FIG. 4: Comparison of the two field estimation procedures,
Egs. (4) and (7) (circles and triangles, respectively) with B =
0 and B = 10 puG. The dotted line reflects the theoretical
sensitivity limit, Eq. (6), of a magnetometer with the same
signal to noise ratio that does not exploit spin-squeezing.

tionary noise by time-averaging. The single-shot estima-
tion trajectory for B = 0 computed according to Eq. (4)
is depicted by the dark solid line in Fig. 3(a) while the
light shaded region denotes the single-shot field uncer-
tainty, AB, due to statistical error in the linear regres-
sion. Values for F' and M needed to evaluate Eq. (4)
were obtained from full-scale atomic Larmor precession
according to the procedure detailed in Ref. [7].

The dotted lines in Fig. 3(a) indicate the ensemble field
variance, computed as E[(B — B)?]*/? from 500 QND tra-
jectories, for the B = 0 field estimate. At long times, this
measure of the magnetometer performance saturates to
the level of shot-to-shot background magnetic field fluc-
tuations in our experimental apparatus, approximately
850 nG. However, prior to saturation, as depicted by the
B = 0 curves in Fig. 4, the regression estimation proce-
dure (circles) outperforms the direct averaging estimator
(triangles) given by Eq. (7). Unlike direct averaging, the
regression estimator suppresses the uncertainty due to
initial spin projection noise— the ensemble uncertainty
drops below the field uncertainty threshold given by Eq.
(6) [dotted line in Fig. 4].

It is important to note that the coherent state pro-
jection uncertainty (dotted line in Fig. 4) was computed
using an absolute calibration [7] of M, and the average
value of F inferred from full-amplitude Larmor preces-
sion measurements. Even though our optically pumped
atomic system did not likely begin from a true minimum-
uncertainty state due to imperfect pumping, sufficient
QND spin noise reduction was achieved to allow the mag-
netometer to outperform the projection noise uncertainty
corresponding to that of an actual coherent state.

In contrast, the B = 10 4G open loop estimation un-
certainty fails to surpass the coherent state threshold de-
spite a clearly visible photocurrent offset [inset in Fig.
3(b)] suggesting the presence of spin-squeezing. Evi-
dently, the non-zero slope renders the open loop estima-
tion susceptible to classical parameter uncertainty in F'
and M. As such, the long time estimation uncertainty
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field estimation error, B — B, as a function of measurement time.

for B = 10 uG saturates to a level much higher than that
of the ambient magnetic field fluctuations, as in Fig. 4.

To alleviate the effects of classical parameter uncer-
tainty, we next performed our closed-loop estimation pro-
cedure by enabling the feedback loop for the entire dura-
tion of each QND trajectory. The photocurrent in Fig.
5(a) displays no discernable slope despite the presence of
a B = —300 uG field as the feedback loop drives a can-
cellation field [Fig. 5(b)], B., to maintain F, ~ 0. The
closed-loop field estimate, computed according to Eq. (8)
for 0 <t < 7, is seen to be robust to shot-to-shot pa-
rameter fluctuations— it is evident from Fig. 5(c) that
the ensemble uncertainty of the closed-loop estimator for
B = —300 G (squares) achieves similar performance to
the B = 0 open loop estimation (circles). Despite the
large magnitude of the estimated field, the closed-loop
procedure is able to outperform the coherent state pro-
jection noise theshold [dotted line in Fig. 5(c)].

It should also be pointed out that in closed loop config-
uration, where the estimation uncertainty is due almost
entirely to QND detection noise, the ensemble variance is
an overly conservative measure of the magnetometer per-
formance. After all, ambient fluctuations that produce
the 850 nG sensitivity floor in Figs. 4 and 5(c) are real
magnetic fields sensed by the atoms. Where other con-
tributions to the detection threshold are well-controlled,
the single-shot estimation error [Fig. 5(c) stars] more ac-
curately reflects the magnetometer’s performance. This
single-shot closed-loop uncertainty surpasses the coher-
ent spin state threshold at even long times in this case
prior to the onset of significant atomic decoherence.

These results highlight what we anticipate will become
a central theme in quantum-limited metrology. Feed-
back enables a precision measurement to achieve opti-
mal insensitivity to classical uncertainty without sacri-
ficing resolution [4, 14]. Furthermore, our closed loop
methodology can be immediately extended to detection
of non-stationary fields. Such an approach is likely to be
essential for obtaining acceptable performance in various
precision metrological applications including spin reso-

nance measurements, atomic frequency standards, and
matter-wave gravimetry.
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Feedback Control of Quantum State Reduction

Ramon van Handel, John K. Stockton, and Hideo Mabuchi

Abstract—Feedback control of quantum mechanical systems
must take into account the probabilistic nature of quantum
measurement. We formulate quantum feedback control as a
problem of stochastic nonlinear control by considering separately
a quantum filtering problem and a state feedback control problem
for the filter. We explore the use of stochastic Lyapunov techniques
for the design of feedback controllers for quantum spin systems
and demonstrate the possibility of stabilizing one outcome of a
quantum measurement with unit probability.

Index Terms—Lyapunov functions, quantum filtering, quantum
mechanics, quantum probability, stochastic nonlinear control.

I. INTRODUCTION

T IS A basic fact of nature that at small scales—at the level
I of atoms and photons—observations are inherently proba-
bilistic, as described by the theory of quantum mechanics. The
traditional formulation of quantum mechanics is very different,
however, from the way stochastic processes are modeled. The
theory of quantum measurement is notoriously strange in that it
does not allow all quantum observables to be measured simul-
taneously. As such there is yet much progress to be made in the
extension of control theory, particularly feedback control, to the
quantum domain.

One approach to quantum feedback control is to circumvent
measurement entirely by directly feeding back the physical
output from the system [1], [2]. In quantum optics, where the
system is observed by coupling it to a mode of the electromag-
netic field, this corresponds to all-optical feedback. Though this
is in many ways an attractive option it is clear that performing
a measurement allows greater flexibility in the control design,
enabling the use of sophisticated in-loop signal processing
and nonoptical feedback actuators. Moreover, it is known that
some quantum states obtained by measurement are not easily
prepared in other ways [3]-[5].

We take a different route to quantum feedback control, where
measurements play a central role. The key to this approach is
that quantum theory, despite its entirely different appearance, is
in fact very closely related to Kolmogorov’s classical theory of
probability. The essential departure from classical probability
is the fact that in quantum theory observables need not com-
mute, which precludes their simultaneous measurement. Kol-
mogorov’s theory is not equipped to deal with such objects: One
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can always obtain a joint probability distribution for random
variables on a probability space, implying that they can be mea-
sured simultaneously. Formalizing these ideas leads naturally to
the rich field of noncommutative or quantum probability [6]—[8].
Classical probability is obtained as a special case if we consider
only commuting observables.

Let us briefly recall the setting of stochastic control theory.
The system dynamics and the observation process are usually
described by stochastic differential equations of the It type.
A generic approach to stochastic control [9], [10] separates the
problem into two parts. First one constructs a filter which prop-
agates our knowledge of the system state given all observations
up to the current time. Then one finds a state feedback law to
control the filtering equation. Stochastic control theory has tra-
ditionally focused on linear systems, where the optimal [linear
quadratic Gaussian (LQG)] control problem can be solved ex-
plicitly.

A theory of quantum feedback control with measurement
can now be developed simply by replacing each ingredient of
stochastic control theory by its noncommutative counterpart.
In this framework, the system and observations are described
by quantum stochastic differential equations. The next step is
to obtain quantum filtering equations [11]-[14]. Remarkably,
the filter is a classical It6 equation due to the fact that the
output signal of a laboratory measuring device is a classical
stochastic process. The remaining control problem now reduces
to a problem of classical stochastic nonlinear control. As in
the classical case, the optimal control problem can be solved
explicitly for quantum systems with linear dynamics.

The field of quantum stochastic control was pioneered by
V. P. Belavkin in a remarkable series of papers [11]-[13], [15]
in which the quantum counterparts of nonlinear filtering and
LQG control were developed. The advantage of the quantum
stochastic approach is that the details of quantum probability
and measurement are hidden in a quantum filtering equation and
we can concentrate our efforts on the classical control problem
associated with this equation. Recently the quantum filtering
problem was reconsidered by Bouten et al. [14] and quantum
optimal control has received some attention in the physics liter-
ature [16], [17].

The goal of this paper is twofold. We review the basic ingre-
dients of quantum stochastic control: Quantum probability, fil-
tering, and the associated geometric structures. We then demon-
strate the use of this framework in a nonlinear control problem.
To this end, we study in detail an example directly related to
our experimental apparatus [4]. As this is not a linear system,
the optimal control problem is intractable and we must resort
to methods of stochastic nonlinear control. We use stochastic
Lyapunov techniques to design stabilizing controllers, demon-
strating the feasibility of such an approach.

0018-9286/$20.00 © 2005 IEEE
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We are motivated in studying the quantum control problem
by recent developments in experimental quantum optics [4],
[18]-[20]. Technology has now matured to the point that
state-of-the-art experiments can monitor and manipulate
atomic and optical systems in real time at the quantum limit,
i.e., the sources of extraneous noise are sufficiently suppressed
that essentially all the noise is fundamental in nature. The
experimental implementation of quantum control systems is
thus within reach of current experiments, with important ap-
plications in, e.g., precision metrology [20]-[23] and quantum
computing [24], [25]. Further development of quantum control
theory is an essential step in this direction.

This paper is organized as follows. In Section II, we give an
introduction to quantum probability and sketch a simple deriva-
tion of quantum filtering equations. We also introduce the partic-
ular physical system that we study in the remainder of this paper.
In Section III, we study the dynamical behavior of the filtering
equation and the underlying geometric structures. Finally, Sec-
tion IV is devoted to the design of stabilizing controllers using
stochastic Lyapunov methods.

II. QUANTUM PROBABILITY AND FILTERING

The purpose of this section is to clarify the connections
between quantum mechanics and classical probability theory.
The emphasis is not on rigor as we aim for a brief but broad
overview; we refer to the references for a complete treatment.

A. Finite-Dimensional Quantum Probability

We begin by reviewing some of the traditional elements of
quantum mechanics (e.g., [26]) with a probabilistic flavor.

An observable of a finite-dimensional quantum system is rep-
resented by a self-adjoint linear operator X = X* on some un-
derlying finite-dimensional complex Hilbert space H (x denotes
Hermitian conjugation). Every self-adjoint operator has a spec-
tral decomposition

X:E:MR,

where \; are the eigenvalues of X and P; are projectors onto
orthogonal eigenspaces in H such that ), P; = Idy.

If we were to measure X we would obtain one of the values
A; as the measurement outcome. The P; represent the events
that can be measured. To complete the picture we still need a
probability measure. This is provided by the density operator p,
which is a linear operator on H satisfying

X\ €R, P=P' =P ey

p=rp", Trp=1, p>0. (2)

The probability of an event P; is given by
pi = Tr[pP;]. 3)

We can now easily find the expectation of X

(X) = 3 \i TrlpP] = Te[pX]. “

In quantum mechanics p is also called the system state.
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As in classical probability, it will be useful to formalize these
ideas into a mathematical theory of quantum probability [6]-[8].
The main ingredient of the theory is the quantum probability
space (A, p). Here, A is a x-algebra, i.e., an algebra with invo-
lution * of linear operators on H, and p is the associated state.
An observable on (A, p) is a sum of the form (1) with P; € A.
In the finite-dimensional case this implies that every observable
is a member of A, but we will see that this need not be the case
in infinite dimensions.

A does not necessarily contain all self-adjoint operators on
‘H. Of special importance is the case in which A is a commu-
tative algebra, i.e., all the elements of A commute ([X,Y] =
XY -YX =0VX,Y € A).Itis easily verified that there is a
one-to-one correspondence (up to isomorphism) between com-
mutative quantum probability spaces (\A, p) and classical proba-
bility spaces (£2, F, P) with card Q@ = dim H. As A is commu-
tative we may represent all its elements by diagonal matrices;
the diagonals are then interpreted as functions f : 2 — R. The
projectors P; € A now correspond to indicator functions yx 4,
on  and hence define the o-algebra F = {A;}. Finally, P is
defined by P[A;] = Tr[P;p].

Clearly, classical probability is a special case of quantum
probability. However, noncommutative 4 are inherent to
quantum mechanical models. Suppose A, B are two events
(projectors) that do not commute. Then, A and B cannot
be diagonalized simultaneously, and hence they cannot be
represented as events on a single classical probability space.
Suppose we wish to measure A and B simultaneously, i.e.,
we ask what is the probability of the event (A and B)? In
the classical case this would be given by the joint prob-
ability P[A,B] = P[A n B] = E[xaxs]. However, in
the noncommutative case this expression is ambiguous as
Tr[pAB] # Tr[pBA]. We conclude that (A and B) is an
invalid question and its probability is undefined. In this case,
the events A and B are said to be incompatible. Similarly, two
observables on A can be measured simultaneously only if they
commute.

We conclude this section with the important topic of con-
ditional expectation. A traditional element of the theory of
quantum measurement is the projection postulate, which can
be stated as follows. Suppose we measure an observable X and
obtain the outcome ;. Then, the measurement causes the state
to collapse

= PipP;
S

(&)

Suppose that we measure another observable X' after mea-
suring X. Using (5), we write

P[X'—)\'|X—)\']—Tr[P’ |]_w 6)
=X | X = Al =TlPiol] = —rrpr—
Now, compare to the definition of conditional probability in
classical probability theory

P[B N 4]

PIBIA] = —

A,BeF. (7
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Clearly, (6) and (7) are completely equivalent if X, X’ com-
mute. It is now straightforward to define the quantum analog of
conditional expectation

TI‘[pPiX/PZ'] P

top b @®)

5[X’|B]:Z

Here, B is the x-algebra generated by X, i.e., it is the algebra
whose smallest projectors are F;. This definition also coincides
with the classical conditional expectation if X, X’ commute.

We obtain ambiguous results, however, when X, X’ do not
commute, as then the fundamental property (E[X’ | B]) = (X’)
is generally lost. This implies that if we measure an observable,
but “throw away” the measurement outcome, the expectation
of the observable may change. Clearly this is inconsistent with
the concept of conditional expectation which only changes the
observer’s state of knowledge about the system, but this is not
surprising: noncommuting X, X’ cannot be measured simulta-
neously, so any attempt of statistical inference of X’ based on
a measurement of X is likely to be ambiguous. To avoid this
problem we define the conditional expectation only for the case
that X’ commutes with every element of B. The measurement
B is then said to be nondemolition [11] with respect to X".

The essence of the formalism we have outlined is that the
foundation of quantum theory is an extension of classical prob-
ability theory. This point of view lies at the heart of quantum
stochastic control. The traditional formulation of quantum me-
chanics can be directly recovered from this formalism. Even the
nondemolition requirement is not a restriction: We will show
that the collapse rule (5) emerges in a quantum filtering theory
that is based entirely on nondemolition measurements.

B. Infinite-Dimensional Quantum Probability

The theory of the previous section exhibits the main fea-
tures of quantum probability, but only allows for finite-state
random variables. A general theory which allows for contin-
uous random variables is developed along essentially the same
lines where linear algebra, the foundation of finite-dimensional
quantum mechanics, is replaced by functional analysis. We will
only briefly sketch the constructions here; a lucid introduction
to the general theory can be found in [6].

A quantum probability space (A, p) consists of a Von Neu-
mann algebra A and a state p. A Von Neumann algebra is a x-al-
gebra of bounded linear operators on a complex Hilbert space H
and p : A — Cisalinear map suchthat p(Idy) = 1, p(A*A) >
0VA € A, and p(A*A) = 0iff A = 0. We gloss over addi-
tional requirements related to limits of sequences of operators.
It is easily verified that the definition reduces in the finite-di-
mensional case to the theory in the previous section, where the
density operator p is identified with the map X +— Tr[pX]. We
always assume Idy, € A.

As in the finite-dimensional case there is a correspondence
between classical probability spaces and commutative algebras.
Given the classical space (€2, F,P) the associated quantum
probability space is constructed as follows:

H=L*Q;C) A=L>C) p:f|—>/fd|]:° ©)
Q

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 6, JUNE 2005

where A acts on H by pointwise multiplication. Conversely,
every commutative quantum probability space corresponds to a
classical probability space. This fundamental result in the theory
of operator algebras is known as Gel’fand’s theorem.

Observables are represented by linear operators that are self-
adjoint with respect to some dense domain of H. The spectral
decomposition (1) is now replaced by the spectral theorem of
functional analysis, which states that every self-adjoint operator
X can be represented as

X = / NE(d)) E : Ba — P(H). (10)
R
Here, E is the spectral or projection-valued measure associated
to X, P(H) is the set of all projection operators on H, and Bg
is the Borel o-algebra on R. X is affiliated to A if E(A) € A
VA € Bg, replacing the concept of measurability in classical
probability theory. For X affiliated to .A, the probability law and
expectation are given by
PIX € Al = p(E(N) (X) = [ Xo(B(an). (1)
Note that unlike in finite dimensions not all observables affil-
iated to A are elements of .4; observables may be unbounded
operators, while .4 only contains bounded operators.

It remains to generalize conditional expectations to the in-
finite-dimensional setting, a task that is not entirely straight-
forward even in the classical case. Let B C A be a commu-
tative Von Neumann subalgebra. As before, we will only de-
fine conditional expectations for observables that are not de-
molished by B, i.e., for observables affiliated to the commutant
B'={Ae€ A:[A,B]=0VB € B}.

Definition 1: The conditional expectation onto B is the linear
surjective map £[- | B] : B — B with the following properties,
forall A € B':

1) E[IdH |B] = IdH;

2) E[A|B]>0if A > 0;

3) E[B1ABy|B] = B1E[A|B]|By VB, Bs € B;

H  p(E[A]B]) = p(A).

The definition extends to any observable X affiliated to B’ by
operating £]- | B] on the associated spectral measure.

It is possible to prove (e.g., [14]) that the conditional expec-
tation exists and is unique.

C. Quantum Stochastic Calculus

Having extended probability theory to the quantum setting,
we now sketch the development of a quantum It6 calculus.

We must first find a quantum analog of the Wiener process.
Denote by (€2, F, P) the canonical Wiener space of a classical
Brownian motion. The analysis in the previous section suggests
that quantum Brownian motion will be represented by a set of
observables on the Hilbert space I' = L?(£2; C). Define the
symmetric Fock space over L?(U) as

IJ(LAU)=C® éLQ(U; C)“" UCRy

n=1

12)

where ® denotes the symmetrized tensor product. It is well
known in stochastic analysis (e.g., [8]) that I" and 'y (L?(R,.))
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are isomorphic, as every L2-functional on §2 is associated to its
Wiener chaos expansion. Now define the operators

Agk:zk1®~-~®/%i®--'®kn/ g%k dt
i=1 Ry

Ak=gO0k OOk, (13)
wherek = k1 ©® -+ ® kp,g,k; € L*(R) and k; means that
the term ¢ is omitted. It is sufficient to define the operators for
such vectors as their linear span I'y is dense in I'. We get

[Ay, 4] = [A5, A7] =0 [A,, A7) = / ghdt (14
Ry

and indeed (v, Agw) = (Ajv,w) forv,w € Ty.

We will construct Wiener processes from A and A*, but first
we must set up the quantum probability space. We take A to
contain all bounded linear operators on I'. To construct p con-
sider the vector A = 1@ 0 € I'y(L?(R4)). Then

p: A—=C p(X)=(AXA). (15)
Now, consider the operator A7 + A,. Using (14) and the
Baker—Campbell-Hausdorff lemma, we obtain

<ei<A;+AQ>> _ (A&m;e_%”g”zem%) — o 3lalF (16)

where ||g||? is the integral of |g|? over R. However, the char-
acteristic functional of a classical Wiener process is

£ [eij;%(t)zM] _ e tlal? (17)
where g is a real function. Clearly, A7 + A, is equivalent in law
to a classical Wiener integral, and any Q; = A} + Ay, with
9t(8) = X0, (5)e*?(%) is a quantum Wiener process.

It is easy to verify that [Q:,Qs] = 0 V¢, s. This important
property allows us to represent all ();,¢ € R, on a single clas-
sical probability space and, hence, (), is entirely equivalent to a
classical Wiener process. Two such processes with different ¢
do not commute, however, and are thus incompatible.

The Fock space (12) has the following factorization property:
for any sequence of times ¢1 < to < -+ < t, € Ry

I'= Ptl] Ol 4, QT 4, @ QT 14, ® F[tn (18)
with s, = Ts(L%([s,1])), Iy =Tos and Ty = 't oo. Thus, I’
can be formally considered as a continuous tensor product over
I's(L*({t})), a construction often used implicitly in physics lit-
erature. A process S; is called adapted if S; = Sy ® Id in
'y @ T, forevery t € Ry. (Q; is adapted for any (.

It is customary to define the standard noises
(19)

A=Ay, Af=A%

. tER

[0,¢]

One can now define It6 integrals and calculus with respect to
Ay, A} in complete analogy to the classical case. We will only
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describe the main results, due to Hudson and Parthasarathy [27],
and refer to [7], [8], and [27] for the full theory.

Let H be the Hilbert space of the system of interest; we
will assume that dim’H < oo. Now, let A be the set of all
bounded operators on H ® I'. The state p = py ® pr is given
in terms some state py on H and pr as defined in (15). The
Hudson—Parthasarathy equation

t
Uy =1d + / (LdA’t“ — L*dA, — (LH + %L*L) dt) Ui
(20)

defines the flow U, ; of the noisy dynamics. Here, L and H are
operators of the form L ® Id on H ® I" and H is self-adjoint. It
can be shown that U, ; is a unitary transformation of H ® I', ;
and U ; = Uy, Us ;.. Given an observable S at time 0, the flow
defines the associated process S; = Ug;SUy ;.

Quantum stochastic differential equations are easily manip-
ulated using the following rules. The expectation of any inte-
gral over dA; or d A} vanishes. The differentials dA;, dA} com-
mute with any adapted process. Finally, the quantum It6 rules
are dAy dA; = dt,dA? = (dA})? = dA; dA; = 0.

Let X € H be any system observable; its time evolution is
given by ji(X) = Ug (X ® Id)Up,;. We easily obtain

dje(X) = jo (LX) dt+ji([L*, X]) dAi+5:([X, L]) dAT (21)

where LX = i[H, X|+ L*XL—(1/2)(L*LX + X L*L). This
expression is the quantum analog of the classical Itd formula

dje(f) = je(Lf) dt + i (Ef) dWy (22)
where ]t(f) = f($t) with d.Z't = b(.’L‘t) dt + J(.Z‘t) th,L is
the infinitesimal generator of z; and X f = o0, f. Similarly, £
is called the generator of the quantum diffusion U, ;.

In fact, the quantum theory is very similar to the classical
theory of stochastic flows [28], [29] with one notable exception:
the existence of incompatible observables does not allow for a
unique sample path interpretation (z in the classical case) of the

underlying system. Hence the dynamics is necessarily expressed
in terms of observables, as in (21).

D. Measurements and Filtering

We now complete the picture by introducing observations and
conditioning the system observables on the observed process.
The following treatment is inspired by [12] and [13].

1) Classical Filtering: To set the stage for the quantum fil-
tering problem we first treat its classical counterpart. Suppose
the system dynamics (22) is observed as y; with
for uncorrelated noise V; with strength x > 0. We wish to cal-
culate the conditional expectation m(f) = E[j.(f) | F7].

Recall the classical definition: E[X | F] is the F-measurable
random variable such that E[E[X | F]Y] = E[XY] for all
F-measurable Y. Suppose F is generated by some random
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variable . The definition suggests that to prove X =E[X | F]
for some F-measurable X it should be sufficient to show that

E[Xef]) = E[Xef¢]  VeeR (24)

i.e., the conditional generating functions coincide.
We will apply this strategy in the continuous case. As m;( f)
is an F} -semimartingale we introduce the ansatz

dﬂ't(f) =

with Cy, Dy F}-adapted. We will choose Cy, D; such that
Elelm:(f)] = [E[et j¢(f)] for all functions g, where

nfg(s

Cydt + D, dy; (25)

ef = ef 9(s) dys = def = g(t)e] dys. (26)
The It6 correction term in the exponent was chosen for conve-
nience and does not otherwise affect the procedure.

Using Itd’s rule and the usual properties of conditional ex-
pectations, we easily obtain

w =E[eJm(Lf) + g(t)edmi(hf)]  (27)
W = E [e{(C; + m(h)Dy)
+ g(t)ef (K* Dy + mi(R)me(f))] . (28)

Requiring these expressions to be identical for any g gives

dri(f) = mo(Lf) dt + 5 (me(hf) — e (B)mi(f)) AW (29)
where the innovations process dW; = k=Y (dy; — m(h) dt)
is a Wiener process. Equation (29) is the well-known
Kushner—Stratonovich equation of nonlinear filtering [30],
[31].

2) Quantum Filtering: The classical approach generalizes
directly to the quantum case. The main difficulty here is how
to define in a sensible way the observation (23)?

We approach the problem from a physical perspective [32].
The quantum noise represents an electromagnetic field coupled
to the system (e.g., an atom.) Unlike classically, where any ob-
servation is in principle admissible, a physical measurement is
performed by placing a detector in the field. Hence, the same
noise that drives the system is used for detection, placing a phys-
ical restriction on the form of the observation.

We will consider the observation Y, = Ug (A7 + A¢)Uo+ +
k(Bjf + B:). Here, B; is a noise uncorrelated from A, that does
not interact with the system (the Hilbert space is HQI'®T, etc.)
Physically, we are measuring the field observable A} + A; after
interaction with the system, corrupted by uncorrelated noise of
strength £ > 0. Using the Itd rule and (20) we get

dY/ = ju(L* + L) dt + dA} + dA; + (dB; + dBy). (30)
It is customary in physics to use a normalized observation Y;
such that dY,;? = dt. We will use the standard notation

dY, = /n(je(L* + L) dt + dA} + dA;) + /1 —ndV; (31)
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where V; = B + By andn = (1+ k2)~! € (0,1].

Y/ and Y; satisfy the following two crucial properties.

1) Y/ is self-nondemolition, i.e., [Y/,Y!] = 0Vs < t. To
see this, note that [V}, Y] = [Ug ,Q+Uo +, Ug ;QsUp s]
with Q; = A + A¢. But U, is a unitary transfor-
mation of H ® I';; and @, = Id ® Q4 ® Id on
HRU' @ ; thuswe get U, QsUs y = QU Usy =
Qs,s0 U QsUp s = Ug QU ;. Butthen [Y/, Y] =
U 41Qt, Qs]Uo+ = 0 as we have already seen that Q¢
is self-nondemolition.

2) Y/ is nondemolition, i.e., [j;(X),Y.] = 0 Vs < ¢ for
all system observables X on H. The proof is identical
to the proof of the self-nondemolition property.

These properties are essential in any sensible quantum filtering
theory: Self-nondemolition implies that the observation is a
classical stochastic process, whereas nondemolition is required
for the conditional expectations to exist. A general filtering
theory can be developed that allows any such observation [11],
[12]; we will restrict ourselves to our physically motivated Y;.

We wish to calculate 7(X) = E[j:(X) | B¢] where B, is the

algebra generated by Y,<;. Introduce the ansatz

where Cy, D; are affiliated to B;. Define
ef — ef g()aYi=4 [ g(s)"ds de? = g(t)ed dYi. (33)

Using the quantum It6 rule and Definition 1, we get

% = (efmi (LX) + g(t)efm( XL + L* X) /)
(34)

w = (eJ(Cy + m(L* + L)Dy\/1)
+ g(t)ef (Dy + me (L™ + L)me(X) /7)) -

(35)
Requiring these expressions to be identical for any g gives

dry(X) = m(LX) dt + /7(m (XL + L*X)

—m(L* 4+ L)my(X))(dY: — /mm(L* 4+ L) dt) (36)
which is the quantum analog of (29). It can be shown that the
innovations process dW; = dY; — \/nm;(L* 4+ L) dt is a mar-
tingale (e.g., [14]) and, hence, it is a Wiener process by Lévy’s
classical theorem.

E. The Physical Model

Quantum (or classical) probability does not by itself describe
any particular physical system; it only provides the mathematical
framework in which physical systems can be modeled. The
modeling of particular systems is largely the physicist’s
task and a detailed discussion of the issues involved is
beyond the scope of this article; we limit ourselves to a
few general remarks. The main goal of this section is to
introduce a prototypical quantum system which we will use
in the remainder of this article.
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The emergence of quantum models can be justified in different
ways. The traditional approach involves “quantization” of
classical mechanical theories using an empirical quantization
rule. A more fundamental theory builds quantum models as
“statistical” representations of mechanical symmetry groups
[33], [34]. Both approaches generally lead to the same
theory.

The model considered in this paper (Fig. 1) is prototypical
for experiments in quantum optics; in fact, it is very similar to
our laboratory apparatus [4]. The system consists of a cloud of
atoms, collectively labeled “spin”, interacting with an optical
field (along 2) produced by a laser. After interacting with the
system the optical field is detected using a photodetector con-
figuration known as a homodyne detector. A pair of magnetic
coils (along ¢) are used as feedback actuators.

The optical and magnetic fields are configured so they only
interact, to good approximation, with the collective angular mo-
mentum degrees of freedom of all the atoms [35]. Rotational
symmetry implies that observables of angular momentum must
form the rotation Lie algebra so(3). If we impose addition-
ally that the total angular momentum is conserved, then it is
a standard result in quantum mechanics [26] that the angular
momentum observables form an irreducible representation of
50(3). Such a system is called a spin.

We take H to be the spin Hilbert space. Any finite dimension
2 < dimH < oo supports an irrep of 50(3); the choice of
dim’H = 25 + 1 depends on the number of atoms and their
properties. We can choose an orthonormal basis {1, € H,m =
—j,—j7 +1,...,j} such that the observables J, , . of angular
momentum around the z, y, z-axis are defined by!

Jx'l/}m = Cmql)m+l + C—m'l/}m—l
Jywm = icmd)m+1 - ic—mwm—l

szm - mq/}m, (37)

with ¢, = (1/2)y/(j — m)(j +m + 1). It is easily verified
that J, , . indeed generate 50(3), e.g., [J,, J,] = iJ..

Note that J,, . are discrete random variables; the fact
that angular momentum is “quantized,” unlike in classical
mechanics, is one of the remarkable predictions of quantum
mechanics that give the theory its name. Another remarkable
nonclassical effect is that .J, ,, . are incompatible observables.

The noise in our model and its interaction with the atoms
emerges naturally from quantum electrodynamics, the quantum
theory of light [36]. Physical noise is not white; however,
as the correlation time of the optical noise is much shorter
than the time scale of the spin dynamics, a quantum analog
of the classical Wong—Zakai procedure [37], [38] can be
employed to approximate the dynamics by an equation of the
form (20). In fact, the term —(1/2)L*L in (20) is precisely
the Wong—Zakai correction term that emerges in the white
noise limit.

We now state the details of our model without further physical
justification. The system is described by (20) with L = /M J.

I Angular momentum is given in units of /i ~ 1.055 x 1073* kg m?s~*. To
simplify the notation we always work in units such that b = 1.
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Fig. 1. Schematic of an experiment for continuous quantum measurement

and control. The spin interacts with an optical mode, which is measured
continuously by homodyne detection. A magnetic field is used for feedback.

and H = B(t)J,. Here M > 0 is the strength of the interac-
tion between the light and the atoms; it is regulated experimen-
tally by the optical cavity. B(t) is the applied magnetic field and
serves as the control input. Finally, homodyne detection [32]
provides exactly the measurement? (31), where 7 is determined
by the efficiency of the photodetectors.

In the remainder of this paper, we will study the spin system
of Fig. 1. Before we devote ourselves entirely to this situation,
however, we mention a couple of other common scenarios.

Often L is not self-adjoint; in this case, the system can emit or
absorb energy through interaction with the field. This situation
occurs when the optical frequency of the cavity field is resonant
with an atomic transition. In our case the frequency is chosen
to be far off-resonant; this leads to self-adjoint L after adiabatic
elimination of the cavity dynamics (e.g., [16]). The filter dy-
namics in this scenario, to be described later, is known as state
reduction. The sequence of approximations that is used for our
particular model is described in [39].

Finally, a different detector configuration may be chosen. For
example, a drastically different observation, known as photon
counting, gives rise to a Poisson (jump) process. We refer to
[32] for a full account of the quantum stochastic approach to
observations in quantum optics.

III. GEOMETRY AND DYNAMICS OF THE FILTER

In the previous section, we introduced our physical model. A
detailed analysis resulted in the filtering equation (36), where
m+(X) is the best estimate of the observable X given the obser-
vations Y,<;. We will now study this equation in detail.

Note that (36) is driven by the observation Y3, which is a clas-
sical stochastic process. Hence, (36) is entirely equivalent to a
classical It6 equation. This is an important point, as it means that
in the remainder of this article we only need classical stochastic
calculus.

2In practice one measures not Y but its formal derivative I(t) = dY; /dt.
As in classical stochastics we prefer to deal mathematically with the integrated
observation Y; rather than the singular “white noise” photocurrent I(t).
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A. The State—Space

We begin by investigating the state space on which the filter
evolves. Clearly (36) defines the time evolution of a map m; we
will show how this map can be represented efficiently.

The map 7 associates to every observable X on H a classical
stochastic process which represents the expectation of X condi-
tioned on the observations up to time ¢. It is easily verified that
m, is linear, identity preserving, and maps positive observables
to positive numbers: In fact, it acts exactly like the expectation
of X with respect to some finite-dimensional state on H. We
will denote this state by p;, the conditional density at time ¢,
where by definition 7;(X) = Tr[p: X].

It is straightforward to find an expression for p;. We get

dpr = L py dt-+/n(Lpi+pe L™ =Tr[p(L+L")] pe) dW; (38)

with the innovations dW; = dY; — \/nTr[p,(L + L*)] dt and
the adjoint generator £L*p = —i[H, p]+ LpL* — (1/2)(L*Lp+
pL*L). In physics, this equation is also known as a quantum
trajectory equation or stochastic master equation.

Let dim’H = n; as n is finite, we can represent linear op-
erators on ‘H by complex matrices. Thus, (38) is an ordinary,
finite-dimensional Itd equation. We saw in Section II-A that p,
is a density matrix, i.e., it belongs to the space

P={peC™":p=p"Trp=1,p2>0}. (39

By construction P is an invariant set of (38), and forms the nat-
ural state space of the filter.

B. Geometry of P

The geometry of P is rather complicated [40]. To make the
space more manageable we will reparametrize P so it can be
expressed as a semialgebraic set.

Let us choose the matrix elements p;; of p as follows. For
1> g set pi; = Aij + ip; with A\jj, s € R Ford < 7 set
pij = pj;- Finally, choose an integer k between 1 and n. For
1 # ksetp; =vi,v; €R,and ppp = 1 — Z#k v;. Collect
all n® — 1 numbers \;;, j1;;, v; into a vector A. Then, clearly,
the map h : A — p is an isomorphism between R™ =1 and
{peC™™:p=p*Trp=1}. .

It remains to find the subset K C R™ ! that corresponds to
positive—definite matrices. This is nontrivial, however, as it re-
quires us to express nonnegativity of the eigenvalues of p as con-
straints on p;;. The problem was solved by Kimura [40] using
Descartes’ sign rule and the Newton—Girard identities for sym-
metric polynomials; we quote the following result.

Proposition 1: Define k,(p),p = 2...n recursively by

4

Php(p) =D (=11 Te[pU kg (p) (40)
q=1
with kg = k1 = 1. Define the semialgebraic set
K={AeR" :ky(h(A)>0,p=2...n}. (41)

Then, h is an isomorphism between K and P.
Note that 2k = 1 — Tr[p?] > 0 implies ||[A|> = Y, v7 +
>is (A% + p3;) < Tr[h(A)?] < 1. Hence, K is compact.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 6, JUNE 2005

We work out explicitly the simplest case n = 2 (spin j =
(1/2)). Set p11 = v, p22 = 1 — v, pa1 = A+ i = pio. Then

Ko={A=(\pv)eR®: N2+ 2 +v(v—1) <0} (42)

This is just a solid sphere with radius (1/2), centered at
(0,0,(1/2)). The case n = 2 is deceptively simple, however: it
is the only case with a simple topology [41], [40].

We can also express (38) in terms of A. Specifically, we will
consider the spin system L = /M J., H = B(t).J, in the basis
Y172 = (1,0),9_1/5 = (0,1) on C**2. We obtain

o= (5 (=2) =)
+ V/MnA(1 = 2v) dW,
1
dyie = =5 My di + /Mgpe(1 = 20) AW,

dl/t = —B(t))\tdt -2 M’I]I/t(l/t — 1) th (43)

By construction, K is an invariant set for this system.

C. Convexity and Pure States

Just like its classical counterpart, the set of densities P is
convex. We have the following fundamental result.

Proposition 2: The set P is the convex hull of the set of pure
states @ = {vv* € C"*" 1 v € C",||v|]| =1} C P.

Proof: As any p € P is self-adjoint it can be written as
p = >, Aiv;v}, where v; are orthonormal eigenvectors of p and
A; are the corresponding eigenvalues. However, Trp = 1,p > 0
imply that . A; = 1 and A; € [0,1]. Hence P C conv Q.
Conversely, it is easily verified that conv Q C P. [ |

Pure states are the extremal elements of P; they represent
quantum states of maximal information. Note that classically
extremal measures are deterministic, i.e., P[A] is either O or 1
for any event A. This is not the case for pure states p = vv*,
however: any event A = ww* with 0 < |Jw*v|| < 1, [|w|| =1
will have 0 < Tr[pA] < 1. Thus, no quantum state is determin-
istic, unless we restrict to a commutative algebra A.

Intuitively one would expect that if the output Y; is not cor-
rupted by independent noise, i.e., 7 = 1, then there is no loss of
information and, hence, an initially pure py would remain pure
under (38). This is indeed the case. Define

1 1
d’Ut = |:<htL — EL*L — E}Lg — 'LH) dt + (L — }Lt) th V¢
(44)

where h; = (1/2)vf(L* + L)v;. Then, it is easily verified that
pt = vy obeys (38) with n = 1. It follows that if n = 1, Q
is an invariant set of (38). In the concrete example (43) it is not
difficult to verify this property directly: when n = 1, the sphere
A2 + % + v(v — 1) = 0 is invariant under (43).

D. Quantum State Reduction

We now study the dynamics of the spin filtering equation
without feedback B(t) = 0. We follow the approach of [42].
Consider the quantity V; = m4(.J2) — m(J.)?. We obtain
dE[V})
dt

= —4MnE [V?]. (45)
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Clearly, E[V,?] > 0, so E[V;] decreases monotonically. But V; >
0 and E[V?] = 0iff V; = 0 a.s. We conclude that
lim E[V,] =0

Jm (46)
and, hence, V; — 0 a.s. ast — oo. However, the only states
p € P with V; = Tr[J?p] — Tr[J.p]*> = O are the eigenstates
Yy, of J.. Hence, in the long-time limit the conditional state
collapses onto one of the eigenstates of .J, as predicted by (5)
for a “direct” measurement of .J.

With what probability does the state collapse onto eigenstate

m? To study this, let us calculate 74 (, 17, ). We get
e (Ym i) = 2/ My me(hmthy, ) (m — me(J2)) AWy (47)

Clearly, m(1,17,) is a martingale, so
Pm = Elmoo (Ymihy,)] = To(Ymibr,)-

We have already shown that p. is one of 1,77, and as the 1)y,
are orthonormal this implies that oo (¥, 1)) = Tr[pocPmr,]
is 1 if n = m and 0, otherwise. Thus, p,, is just the proba-
bility of collapsing onto the eigenstate . However, note that
To(m},) = Tr[potbm1bl,], so (48) gives exactly the same col-
lapse probability as the “direct” measurement (3).

We conclude that the predictions of quantum filtering theory
are entirely consistent with the traditional quantum mechanics.
A continuous reduction process replaces, but is asymptotically
equivalent to, the instantaneous state collapse of Section II-A.
This phenomenon is known as quantum state reduction.> We
emphasize that quantum filtering is purely a statistical inference
process and is obtained entirely through nondemolition mea-
surements. Note also that state reduction occurs because L = .J,
is self-adjoint; other cases are of equal physical interest, but we
will not consider them in this paper.

Physically, the filtering approach shows that realistic mea-
surements are not instantaneous but take some finite time. The
time scale of state reduction is of order M ~!, an experimentally
controlled parameter. A carefully designed experiment can thus
have a reduction time scale of an order attainable by modern
digital electronics [43], which opens the door to both measuring
and manipulating the process in real time.

(48)

IV. STABILIZATION OF SPIN STATE REDUCTION
A. The Control Problem

It is a standard idea in stochastic control that an output feed-
back control problem can be converted into a state feedback
problem for the filter [9], [10]. This is shown schematically in
Fig. 2. The filtering equations (36) or (38) are driven by Y;;
hence, at least in principle, the conditional state p, can be cal-
culated recursively in real time by a digital processor.

The filter describes optimally our knowledge of the system;
clearly, the extent of our knowledge of the system state limits the
precision with which it can be controlled. The best we can hope

3The term state reduction is sometimes associated with quantum state dif-
fusion, an attempt to empirically modify the laws of quantum mechanics so
that state collapse becomes a dynamical property. The state diffusion equation,
which is postulated rather than derived, is exactly (44) with L = L*. We use the
term state reduction as describing the reduction dynamics without any relation
to its interpretation. The analysis of [42] is presented in the context of quantum
state diffusion, but applies equally well to our case.
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Y,: Eq.(31

— System: Eq.(21) i Ea.B1)
:' o _B_(}) ____________________ Digital processing | |
| Controller ~2— Filter: Eq.(38) |

Fig.2. Schematic of the feedback control strategy. The output from the system
is used to propagate the conditional state of the filter. The feedback signal is of
state feedback form with respect to the conditional state.

to do is to control the system to the best of our knowledge, i.e.,
to control the filter. The latter is a well-posed problem, despite
that we cannot predict the observations Y3, because we know the
statistics of the innovations process W;.

For such a scheme to be successful the system dynamics (21)
must be known, as the optimal filter is matched to the system dy-
namics. Designing controllers that perform well even when the
system dynamics is not known precisely is the subject of robust
control theory. Also, efficient signal processing algorithms and
hardware are necessary to propagate (38) in real time, which is
particularly problematic when dim H is large. Neither of these
issues will be considered in this paper.

The state reduction dynamics discussed in the previous sec-
tion immediately suggests the following control problem: We
wish to find state feedback B(t) = ®(p;) so that one of the
eigenstates p = 1,1y, is globally stabilized. The idea that a
quantum measurement can be engineered to collapse determin-
istically onto an eigenstate of our choice is somewhat remark-
able from a traditional physics perspective, but clearly the mea-
surement scenario we have described provides us with this op-
portunity. For additional motivation and numerical simulations
relating to this control problem, see [3].

B. Stochastic Stability

In nonlinear control theory [44] stabilization of nonlinear sys-
tems is usually performed using the powerful tools of Lyapunov
stability theory. In this section we will describe the stochastic
counterpart of deterministic Lyapunov theory, developed in the
1960s by Has’minskii and others. We will not give proofs, for
which we refer to [45]-[48].

Let W, be a Wiener process on the canonical Wiener space
(©2, F,P). Consider an Itd equation on R™ of the form

d.ﬁlﬁ't = b(.ﬁl?t) dt + CT(.CEt) th (49)

where b, o : R™ — R™ satisfy the usual linear growth and local
Lipschitz conditions for existence and uniqueness of solutions
[49]. Let z* be a fixed point of (49), i.e., b(z*) = o(z*) = 0.
Definition 2: The equilibrium solution z; = z* of (49) is
1) stable in probability if

lim Plsup|z: —2"| > €] =0 Ve > 0;
>0

xrog—x*
2) asymptotically stable if it is stable in probability and

lim

rog—x*

[tlim |zy — 2| =0] = 1;
3) globally stable if it is stable in probability and

[F"[tli)rgo |z, —z*| = 0] = L.
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Note that 1) and 2) are local properties, whereas 3) is a global
property of the system.
Recall that the infinitesimal generator of x; is given by

2

— § : i _E i (2)o”
o i b(a:)alz +2 o' (z)o (a:)axiaxf

i

(50)

so dE[f(z)]/dt = E[Lf(x)]. We can now state the stochastic
equivalent of Lyapunov’s direct method [45]-[47].

Theorem 1: Define U, = {x : |x — 2*| < h}. Suppose
there exists some A > 0 and a function V : U, — R, that
is continuous and twice differentiable on Uy \{z*}, such that
V(z*) = 0 and V(z) > 0, otherwise, and LV (z) < 0 on Uy,
Then the equilibrium solution z; = z* is stable in probability.
If LV (z) < 0 on Up\{z*}, then z* is asymptotically stable.

Theorem 1 is a local theorem; to prove global stability we
need additional methods. When dealing with quantum filtering
equations a useful global result is the following stochastic
LaSalle-type theorem of Mao [48]. In the theorem we will
assume that the dynamics of (49) are confined to a bounded
invariant set G.

Theorem 2: Let G be a bounded invariant set with respect
to the solutions of (49) and xy € . Suppose there exists a
continuous, twice differentiable function V' : G — R, such
that LV (z) < 0Vz € G. Then lim;_, LV (2:) = 0 ass.

Finally, we will find it useful to prove that a particular fixed
point repels trajectories that do not originate on it. To this end,
we use the following theorem of Has’minskii [45].

Theorem 3: Suppose there exists some h > 0 and a function
V : U, — R that is continuous and twice differentiable on
Up\{z*}, such that

lim V(z) = +o0
and LV (z) < 0 on Up\{z*}. Then, the equilibrium solution
x; = z* is not stable in probability and, moreover
Vo € Uh\{l’*}.

Plsup |z — z"| < h] =0 (51)
>0

C. A Toy Problem: The Disc and the Circle

We treat in detail an important toy problem: spin j = (1/2).
The low dimension and the simple topology make this problem
easy to visualize. Nonetheless we will see that the stabilization
problem is not easy to solve even in this simple case.

We have already obtained the filter (43) on K, for this case.
Conveniently, the origin in K5 is mapped to the lower eigenstate
Y1297 /2> We will attempt to stabilize this state.

Note that the equations for \;, 1, are decoupled from p;.
Moreover, the only point in K5 with (A,») = (0,0) has u = 0.
Hence, we can equivalently consider the control problem

d\, = <B(t) <1/t - %) - %M)\t> dt

+ \ M’I]At(l — 2Vt) th

dl/t = —B(t))\t dt — 2 M’I]l/t(l/t - 1) th (52)
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on the disc B% = {(\,v) € R? : A + (v — 1) < 0}. Control-
ling (52) is entirely equivalent to controlling (43), as globally
stabilizing (A, ») = (0, 0) guarantees that y is attracted to zero
due to the geometry of K.

An even simpler toy problem is obtained as follows. Suppose
n = 1; we have seen that then the sphere A2+ p? +v(v—1) = 0
is invariant under (43). Now, suppose that additionally 1o = 0.
Then, clearly the circle S* = {(\,v) € R? : A2 +v(v—1) = 0}
is an invariant set. We find

d@t = (B(t) — %M sin Ht COS Ht) dt — vV M sin Ht th (53)

after a change of variables (2A;,214) = (sin 6y, 1 + cos 6;).

System (52) could in principle be realized by performing the
experiment of Fig. 1 with a single atom. The reduced system
(53) is unrealistic, however; it would require perfect photode-
tectors and perfect preparation of the initial state. Nonetheless,
it is instructive to study this case, as it provides intuition which
can be applied in more complicated scenarios. Note that (53) is
a special case of (52) where = 1 and the dynamics is restricted
to the boundary of B2.

D. Almost Global Control on St

We wish to stabilize (A,v~) = (0,0), which corresponds to
6 = m. Note that by (53) a positive magnetic field B > 0 causes
an increasing drift in 6, i.e., a clockwise rotation on the circle.
Hence, a natural choice of controller is one which causes the
state to rotate in the direction nearest to §# = « from the current
position. This situation is sketched in Fig. 3(a).

A drawback of any such controller is that by symmetry, the
feedback must vanish not only on § = 7 but also on § = 0;
hence, # = 0 remains a fixed point of the controlled system
and the system is not globally stable. We will show, however,
that under certain conditions such feedback renders the system
almost globally stable, in the sense that all paths that do not start
on f = 0 are attracted to § = 7 a.s.

For simplicity, we choose a controller that is linear in (\, v/)

Here, G is the feedback gain. The generator of (53) is then
1 a 1 02
L= (Gsina - EMsinecose) P §M51n2ﬁw. (55)

As a first step we will show that the fixed point § = 7 is asymp-
totically stable and that the system is always attracted to one of
the fixed points (there are no limit cycles, etc.). To this end, con-
sider the Lyapunov function

V()=1+cosh, V(r)=0,

V(e £7)>0. (56)

‘We obtain
LV () = —Gsin?4. (57)

It follows from Theorem 1 that # = 7 is asymptotically stable,
and from Theorem 2 that lim;_, 0; € {0,7} a.s.
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() 6=0 (b)

Fig. 3.
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(c)

B(0)

(Av)=(0,1)

-0.5

/TN

Uncontrollable line

LV(0)

V(0)

0 /2 n
6

3n/2 2n

Cartoons of the various control schemes; the arrows denote the rotation direction of the magnetic field. (a) Almost global control on the circle: The

magnetic field always rotates in the direction of least distance to & = =, but § = 0 remains a fixed point. (b) Global control on the circle: We intentionally
break the symmetry of the controller to remove the undesired fixed point. The graphs show a typical feedback law and Lyapunov design with M/ = 1, B(#) =
(1/2)sin@ — (1/4)(1 4 cos6),V(8) = ((5/2) + sin8)(1 + cos ). (c) A neighborhood of (A, ) = (0, 1) showing why the almost global control law fails
on the disc. The control vanishes on the line A = 0; hence, points on this line are never repelled with unit probability, in violation of (51).

What remains to be shown is that any trajectory which does
not start on # = 0 ends up at § = 7 a.s. To prove this, consider

V(6) = —log(1 — cosf) lim V() = +o0. (58)
We easily find
LV (0) = cos®(8/2)(M + M cosf — 2G). (59)
Now, note that
LV(#) <0 V0e (—m,m\{0} if G>M.  (60)
Thus, by Theorem 3 we have
P[§§g|6t| <7w]=0 iffy e (—m, m)\{0}. (61)

However, as § € S! this implies §; — 7 as. if §y €
(—=m,7)\{0}. We conclude that the control law (54) almost
globally stabilizes the system if we have sufficient gain G > M.

E. Global Control on S*

Any deterministic system on the circle is topologically ob-
structed* from having a globally stabilizing controller: A con-
tinuous vector field on S* with a stable fixed point necessarily
has an unstable fixed point as well. In the stochastic case, how-
ever, this is not the case. Though the drift and diffusion terms
must each have two fixed points, we may design the system in
such a way that only the stable fixed points coincide.

To apply such a trick in our system we must break the natural
symmetry of the control law. This situation is shown in Fig. 3(b).
There is a region of the circle where the control rotates in the
direction with a longer distance to § = 7; the advantage is that
6 = 0 is no longer a fixed point.

The linear control law that has this property has the form

B(t) = QGAt + QHI/t = (G'sin 9t + H(l + cos 9t) (62)

with G > 0. We can prove global stability by applying Theo-
rems 1 and 2 with a Lyapunov function of the form

V(8) = (a+sinf)(1 + cosb), a> 1. (63)
4This is only the case for systems with continuous vector fields and contin-
uous, pure state feedback. The obstruction can be lifted if one considers feed-

back laws that are discontinuous or that have explicit time dependence.

Unfortunately, it is not obvious from the analytic form of LV
how o must be chosen to satisfy the Lyapunov condition. It is
however straightforward to plot LV, so that in this simple case
it is not difficult to search for « by hand.

A typical design for a particular choice of parameters is
shown in Fig. 3(b). The conditions of Theorems 1 and 2 are
clearly satisfied, proving that the system is globally stable. Note
that when the symmetry is broken we no longer need to fight
the attraction of the undesired fixed point; hence, there is no
lower bound on G. In fact, in Fig. 3(b) we have G < M.

F. Almost Global Control on B?

Unfortunately, the simple almost global control design on S*
does not generalize to B2. The problem is illustrated in Fig. 3(c).
The controller (54) vanishes at § = 0 and 7, but we can prove
that § = 0 is repelling. On B2, however, the control vanishes
on the entire line A = 0 which becomes an invariant set of
(52). However, then it follows from (48) that any trajectory with
Ao = 0,19 ¢ {0, 1} has a nonzero probability of being attracted
to either fixed point.

Consider a neighborhood Uj, of the point (\,v) = (0,1)
that we wish to destabilize. For any i > 0, however small, Uj,
contains points on the line A = 0 for which » < 1, and we
have seen that trajectories starting at such points have a nonzero
probability of being attracted to (0, 1). However, this violates
(51), so clearly we cannot prove Theorem 3 on B2.

One could attempt to prove that all points except those with
A = 0 are attracted to the origin with unit probability. The Lya-
punov theory of Section IV-B is not equipped to handle such
a case, however, and new methods must be developed [50]. In-
stead, we will focus on the global control problem.

G. Global Control on B? and Semialgebraic Geometry

Once again we consider the asymmetric control law

and try to show that it globally stabilizes the system. Before
we can solve this problem, however, we must find a systematic
method for proving global stability. Searching “by hand” for

Lyapunov functions is clearly impractical in two dimensions,
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and is essentially impossible in higher dimensions where the
state—space cannot be visualized.

In fact, even if we are given a Lyapunov function V, testing
whether LV < 0 on K is highly nontrivial. The problem can
be reduced to the following question: Is the set {A € R -1
LV > 0,k,(h(A)) > 0,p = 2...n} empty? Such problems
are notoriously difficult to solve and their solution is known to
be NP-hard in general [51].

The following result, due to Putinar [52], suggests one way
to proceed. Let S be a semialgebraic set, i.e., S = {x € R™ :
si(xz) > 0,4 = 1...n} with polynomial s;. Suppose that for
some ¢ the set {x € R™ : s;(x) > 0} is compact. Then, any
polynomial p that is strictly positive on S is of the form

p(z) = po(z) + Zpi(x)si(x) pr(z) = Zpkj($)2 (65)
i=1 7

where py; are polynomials, i.e., p is an affine combination of
the constraints s; and sum-of-squares polynomials py,.

Conversely, it is easy to check that any polynomial of the form
(65) is nonnegative on S. We may thus consider the following
relaxation: Instead of testing nonnegativity of a polynomial on
S, we may test whether the polynomial can be represented in the
form (65). Though it is not true that any nonnegative polynomial
on S can be represented in this form, Putinar’s result suggests
that the relaxation is not overly restrictive. The principal advan-
tage of this approach is that the relaxed problem can be solved
in polynomial time using semidefinite programming techniques
[53], [54].

The approach is easily adapted to our situation as K is a
semialgebraic set, and we solve the relaxed problem of testing
whether — LV can be expressed in the form (65). In fact, the
semidefinite programming approach of [53] and [54] even
allows us to search for polynomial V' such that (65) is satisfied;
hence we can search numerically for a global stability proof
using a computer program. Such searches are easily imple-
mented using the Matlab toolbox SOSTOOLS [55].

A typical design for a particular choice of parameters is
shown in Fig. 4. After fixing the parameters M = 2,7 = (1/2),
and the control law B(t) = 4A; — vy, an SOSTOOLS search
found the Lyapunov function

V(A v) =218 —5.730% 4+ 10.4\v — 5.6302 (66)

where —LV is of the form (65). Hence, Theorems 1 and 2 are
satisfied, proving that the system is globally stable.

A couple of technical points should be made at this
point. Note that formally the filtering equation (38) and its
parametrizations do not satisfy the linear growth condition.
However, as the filter evolves on a compact invariant set K,
we could modify the equations smoothly outside K to be of
linear growth without affecting the dynamics in K. Hence, the
results of Section IV-B can still be used. Moreover, it is also not
strictly necessary that V' be nonnegative, as adding a constant
to V does not affect LV. Hence, it is sufficient to search for
polynomial V' using SOSTOOLS.
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Fig.4. Contour plot of LV for the control law B(t) = 4\ —v,, with M = 2
and 7 = (1/2). The function V' was found by semidefinite programming.

H. Global Control for Higher Spin

The approach for proving global stability described in the pre-
vious section works for arbitrary spin j. To generalize our con-
trol scheme we need to convert to the parametrization of Sec-
tion III-B, as we did for spin j = (1/2) in (52). We must also
propose a control law that works for general spin systems.

We do not explicitly convert to the parametrized form or gen-
erate the constraints k,, as this procedure is easily automated
using Matlab’s symbolic toolbox. Note that the parameter k de-
termines which eigenstate is mapped to the origin. This is con-
venient for SOSTOOLS searches, as polynomials can be fixed
to vanish at the origin simply by removing the constant term.
We always wish to stabilize the origin in the parametrized coor-
dinate system.

To speed up computations we can eliminate all the parameters
ti; as was done in going from (43) to (52). The fact that the
remaining equations are decoupled from ;; is easily seen from
(38), as both ¢.J,, and J, are real matrices. Moreover, it is easily
verified that, by convexity of K, the orthogonal projection of
any p € K onto {R" =1 : ;; = 0Vi > j} lies inside K.
Hence, we only need to consider the reduced control problem
with p;; = 0.

In [3], we numerically studied two control laws for general
spin systems. The first law, By (t) = m¢(Jo . + J. Jx —2maJy)
(my is the eigenstate we wish to stabilize), reduces to our al-
most global control law when j = (1/2). However, numerical
simulations suggest that for j > (1/2) this control law gives
a finite collapse probability onto m # mg. The second law,
Bs(t) = m(J,) — my, reduces to Bo(t) = uv; in the case
j = (1/2), which is not locally stable. Our experience with
J = (1/2) suggests that a control law of the form

B(t) = Gmy(Jp .+ J. T —2mg )+ H(w(J,) —ma) (67)

should globally stabilize the eigenstate my of a spin ;7 system.

We have verified global stability for a typical design with j =
1,M=2n=(1/2),and B(t) = 2m(JoJ. + J. J2) + me(J>)
using SOSTOOLS. A Lyapunov function was indeed found that
guarantees global stability of the eigenstate 1o/ .

Physically the case 5 > (1/2) is much more interesting
than j = (1/2). An experiment with j > (1/2) can be per-
formed with multiple atoms, in which case the control produces
statistical correlations between the atoms. Such correlations,
known as entanglement, are important in quantum computing.
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The structure of the control problem is, however, essentially
the same for any j. We refer to [3] and [56] for details on
entanglement generation in spin systems.

V. CONCLUSION

In this paper, we have argued that quantum mechanical sys-
tems that are subjected to measurement are naturally treated
within the framework of (albeit noncommutative) stochastic fil-
tering theory. The quantum control problem is then reduced to
a classical stochastic control problem for the filter. We have
demonstrated the viability of this approach by stabilizing state
reduction in simple quantum spin systems using techniques of
stochastic nonlinear control theory.

Unfortunately, the stabilization techniques of Section IV have
many drawbacks. We do not have a systematic procedure for
finding control laws: we postulate linear controllers and search
for corresponding Lyapunov functions. Even when the control
law is known, verifying global stability is nontrivial even in the
simplest case. Our numerical approach, though very successful
in the examples we have shown, rapidly becomes intractable as
the dimension of the Hilbert space grows. Finally, our methods
do not allow us to make general statements; for example, though
it seems plausible that the control law (67) is globally stabilizing
for any j,mgq, M,n, H # 0, and G > 0, we have not yet suc-
ceeded in proving such a statement.

Nonetheless, we believe that the general approach outlined
in this paper provides a useful framework for the control of
quantum systems. It is important in this context to develop
methods for the control of classical stochastic nonlinear sys-
tems [57]-[60], as well as methods that exploit the specific
structure of quantum control problems. The design of realistic
control systems will also require efficient signal processing
algorithms for high-dimensional quantum filtering and methods
for robust quantum control [61].
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Abstract

On the occasion of the hundredth anniversary of Albert Einstein’s annus
mirabilis, we reflect on the development and current state of research in cavity
quantum electrodynamics in the optical domain. Cavity QED is a field which
undeniably traces its origins to Einstein’s seminal work on the statistical theory
of light and the nature of its quantized interaction with matter. In this paper,
we emphasize the development of techniques for the confinement of atoms
strongly coupled to high-finesse resonators and the experiments which these
techniques enable.

(Some figures in this article are in colour only in the electronic version)

1. From Einstein to cavity QED

In the years prior to his seminal 1905 papers, Albert Einstein had given much thought to
the statistical properties of electromagnetic fields [1], especially with regard to the theory of
black-body radiation developed by Max Planck [2]. Einstein realized that the quantization
of light—particularly the creation and annihilation of ‘light quanta’—is something more
fundamental than a tacit consequence of the assumption that the total energy of a black-body
is discretely distributed between a set of microstates. Beginning in 1905 with On a heuristic
point of view about the creation and conversion of light [3] and in four subsequent papers on
quantization [4-7], he laid the foundations of the ‘old quantum theory’ [8], summarized in
what is commonly referred to as the ‘light quantization hypothesis’:

... the energy of a light ray emitted from a point [is] not continuously distributed
over an ever increasing space, but consists of a finite number of energy quanta which
are localized at points in space, which move without dividing, and which can only be
produced and absorbed as complete units [3].

0953-4075/05/090551+15$30.00  © 2005 IOP Publishing Ltd  Printed in the UK S551
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He argued that the existence of light quanta was essential to Planck’s hypothesis. In his
treatment of the problem, he developed a formalism based upon the inversion of Boltzmann’s
law to describe the statistical variances in the energy of a black body. Using this technique, he
was able to separate these energy fluctuations into the sum of two quantities, one representing
the fluctuation of a number of particles and the other corresponding to the variances of a
classical wave [6, 9]. The wave—particle duality to which Einstein alluded is, of course, now
one of the tenets of modern quantum mechanics. These early papers also began, for the first
time, to broach phenomenological problems in terms of quantized light. In a very literal sense,
Einstein’s descriptions of the photoelectric effect and the ultraviolet photoionization of gases
[3] constitute the first applications of quantum electrodynamics as well as the first microscopic
(rather than statistical) descriptions of quantized electromagnetic phenomena.

While the same could be said of vast expanses of modern physics, much of the intellectual
underpinnings of cavity quantum electrodynamics are certainly due to this early work by
Einstein. Einstein wrote

The wave theory of light which operates with continuous functions in space has been
excellently justified for the representation of a purely optical phenomena and it is
unlikely ever to be replaced by another theory. One should, however, bear in mind
that optical observations refer to time averages and not to instantaneous values and
notwithstanding the complete experimental verification of the theory of diffraction,
reflection, refraction, dispersion and so on, it is quite conceivable that a theory of
light involving the use of continuous functions in space will lead to contradictions
of experience, if it is applied to the phenomena of the creation and conversion of
light [3].

As will be described in the following sections, an atom strongly coupled to the mode
of a resonant cavity is precisely one such situation. In fact the atom—cavity system is
uniquely well-suited to the efficient generation of single photons, a phenomenon wherein
Einstein’s ‘contradictions of experience’ certainly dominate. The quantized description of
light is manifestly that which is needed to describe cavity QED.

In what follows, we introduce cavity quantum electrodynamics in the regime of strong
coupling. With an emphasis on the current state-of-the-art experiments, particularly those
carried out by our group at Caltech, involving atoms trapped within a optical cavity, we also
review the evolution of experiments in cavity QED and discuss future research directions.

2. Fundamentals of the cavity QED system

2.1. Introduction

Cavity quantum electrodynamics explores the measurement and control of quantized
electromagnetic fields and atomic systems coherently coupled inside an electromagnetic
resonator. A simple, representative model of the cavity QED system, as illustrated in figure 1,
consists of exactly one two-state atomic system at rest within the mode of a resonator formed
by two spherical mirrors. The dynamics of this system are described by the well-known
Jaynes—Cummings Hamiltonian [10, 11] which is composed of the sum of separate terms for
both the atom and field as well as a third term which arises from the total atom—field dipole
interaction:

H = hwab, +hoc (@'a+ 1) +hg(r)@'é +as™h). (1)

The operators (6, 61, &) are the Pauli operators corresponding to inversion, raising and
lowering of the atomic state, while (@', @) are the creation and annihilation operators for
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Figure 1. Characteristic parameters of atom, cavity, and environment: «, the rate of decay of the
cavity field; y, the rate at which the atomic dipole radiates into modes other than the cavity field
mode; 7, the transit time of an atom through the cavity mode; and g, the rate of coherent atom—field
coupling. Strong coupling requires that g/(y, «, %) > 1.

photons in the coupled mode of the resonator. (w4, wc) are the resonant frequencies of the
atom and cavity, respectively.

The magnitude of the coupling is a function of the atom’s position, r, within the standing
wave structure of the mode and is given by

1
5 = (ﬂ) U = g0l ). @
27160 VM

Here, u is the atomic dipole matrix element, V), is the resonant mode volume, a geometric
parameter of cavity, and U(r) is the cavity mode function, defined such that V), =
f |U (r)|?> d®x. The coupling coefficient 2g is known as the single-photon Rabi frequency and
represents the maximum rate at which one quantum of excitation is exchanged between atom
and field [12].

This idealized model captures the essential dynamics of the interaction but makes no
accounting of the dissipative processes which naturally accompany real cavities and atoms.
The dominant loss associated with the cavity results from the leakage of photons through the
mirrors at a rate 2«x, where «, the frequency half-width of the resonant mode, is specified by
the quality factor of the cavity,

wc

0= e 3)
A second dissipative channel is the result of spontaneous emission from the atom into field
modes other than that which is preferentially coupled to the resonator. In general, there are
two distinct atomic decay rates along the transverse and longitudinal directions of the cavity
(YL, 1), both of which are functions of the position of the atom, r [13]. In practice, with current
state-of-the-art optical Fabry—Perot cavities this position dependence is largely negligible. In
this case, the angle subtended by the mode of the cavity is small, and the transverse decay rate
is very closely approximated by the atomic free space decay rate, y; = y = y;/2 (this is not
generally true, however, for cavities of different geometries [14—16]). A third consideration
is the length of time, T, during which the atom resides within the cavity mode, after which no
coherent evolution is possible. While each of these three dissipative channels damp the desired
quantum evolution of the system, it should be noted that they do not necessarily stand on equal
footing. In particular, the rate « is characterized by emission of the cavity field into one,
well-defined spatial mode which facilitates efficient readout of the state of the coupled system.
The other two rates, (y, T, represent, in general, irreversible loss of information to the
environment. As photons are coupled into a continuum of experimentally inaccessible spatial
modes, and as atoms leave the cavity volume (though not necessarily so in the microwave
domain), it is difficult to extract useful information from the system.
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The description, above, is generally applicable to cavities with resonant frequencies
ranging from the microwave [11] to optical regimes and which may be coupled to appropriate
two-level systems as diverse as Cooper pair boxes [17, 18] and Rydberg atoms [19, 20].
Whereas high-finesse Fabry—Perot cavities coupled to alkali atoms in the optical regime will
be the focus of this discussion, broad reviews of cavity QED in this and other regimes are
available [12, 21].

2.2. Strong coupling

As we have seen, cavity QED is parametrized by four rates (g, «, ¥, T~'). In order to
emphasize the coherent evolution of the system, it is useful to require that the coupling
coefficient dominate dissipation:

g/, T > 1. (4)

This condition is commonly known as the strong coupling criterion [12].

It is instructive to explore strong coupling in terms of two dimensionless parameters
known as the critical photon and atom numbers. The critical (or saturation) photon number
describes the number of photons such that for a cavity of a given geometry the intracavity
optical intensity is sufficient to saturate the atomic response (/gy):

yz

ey )

no
Similarly, the critical atom number describes the number of strongly coupled atoms necessary
to affect appreciably the intracavity field:

No =27 ©6)
8o

Many quantum optical systems—Ilasers for instance, with /g ~ 10°~10*—have large critical
parameters and therefore adding or removing one photon or atom does not significantly alter
the dynamics as a whole. In these systems, the coherent coupling parameter g, is scaled
away as processes approach the semi-classical regime. By contrast, the necessary (though not
sufficient) criteria for strong coupling are that (n9, No) < 1. This means that in the regime of
strong coupling, single quanta dominate the dynamics of the system such that the interaction
between atom and photon can be manifestly nonclassical and nonlinear for single atoms and
photons. Strong coupling thereby provides a powerful tool for the study of quantum optics as
well as the interaction of the quantized electromagnetic field with matter.

2.3. The Jaynes—Cummings ladder

In the strong coupling regime, coherent interaction dominates dissipation and so the Jaynes—
Cummings Hamiltonian (1) provides a foundation for the description of the evolution of
the system. Allowing the cavity mode to be resonant with the atomic transition frequency
(wc = wy) and diagonalizing (1) yields a set of eigenstates for the system,

[£)n = 518 n) £le.n — 1), )

where (g, e) denote the ground and excited states of the atom and there are n quanta of
excitation in the system. These are the dressed states of the Jaynes—Cummings model and
represent the equal distribution of excitation between atom and field with corresponding energy
eigenvalues E1 = nhw + /nhg(r).
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Experimentally, as an atom enters the mode of the cavity the transmission and absorption
spectra in the weak-field limit will no longer exhibit a single, empty-cavity resonance at
@ = wc but instead a two-peaked structure with maxima at w = w¢ % /ng(r), corresponding
to the energy eigenvalues of |1); for one quantum of excitation. This characteristic spectral
feature is known as the vacuum-Rabi splitting and serves as a hallmark of strong coupling.

2.4. Cavities in the laboratory

While defining the criteria for strong coupling is a relatively simple matter (go > (v, k, T™")),
realizing cavities which in practice meet these criteria is a decidedly more complicated task.
Over the past 25 years, experiments in optical cavity QED have pushed progressively farther
into the regime of strong coupling such that typical values for state-of-the-art optical cavities
today are ny ~ 1073~10~* photons and Ny &~ 1072-10~3 atoms. These cavities are of Fabry—
Perot geometry and consist of two superpolished spherical mirror substrates which have been
coated with a highly reflective stack of dielectric layers (R = 0.999 9984 is a representative
value for the reflectivity of one such state-of-the-art mirror) [22]. The reflectivity of these
mirrors is sufficiently large that the inter-mirror spacing (and therefore the mode volume, V,,,)
can be made relatively small without « growing larger than gg o< V,, 2 Current experiments
underway in our group at Caltech involve atomic caesium coupled to a cavity of length
L = 42.2 yum and with mirrors of radius of curvature R = 20 cm such that

(go, K, y) = (34,4.1,2.5) MHz, (8)

well into the regime of strong coupling. The finesse of this cavity at the D2 line in atomic
caesium (A = 852.4 nm, made resonant with the TEMy mode of the cavity) is F = 4.2 x 10°,
and the critical parameters are ng = 0.0029 and Ny = 0.018. In future experiments, it may be
possible to achieve even higher finesse by coupling to the whispering gallery modes of quartz
microspheres [14—16] or microtoroidal resonators [23, 24] or to photonic bandgap resonators
[25, 26].

3. Experiments in the regime of strong coupling

In the following sections, we briefly review the experimental evolution of optical cavity QED
in the regime of strong coupling, particularly with regard to those techniques developed
by our group at Caltech. The goal is to set the stage for a description of the new set of
tools made available by the recent marriage of atom—cavity systems and laser cooling and
trapping. A common theme throughout the discussion will be the quest to localize and isolate
a single atom which is strongly coupled to the cavity mode, as required by, for instance,
a variety of schemes for implementing quantum computation and communication protocols
[27-30, 25].

3.1. Early work

The first observations of atoms strongly coupled to optical resonators came in the early
1990s with experiments involving atomic beam transits through the mode of a high-finesse
cavity [31, 32]. The average duration of each single atom transit was 77 = 0.4 us and
the flux of the beam was adjustable such that the average intracavity atom number N ~ 1.
By measuring the transmission of a weak probe of variable detuning about the caesium
(6812, F = 4 — 6P3p, F/ = 5') transition, the vacuum-Rabi splitting for one atom
(on average) was observed for the first time, albeit weighted over a range of values for
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Figure 2. Early one-atom vacuum-Rabi splitting measurements. (a) The vacuum-Rabi splitting
for N = 1 as measured with an atomic beam by Thompson et al [32]. Curve (i) represents
the theoretical transmission averaged over the relevant range of values for g(r) and N, while (ii)
describes precisely one atom with maximal coupling go. (b) Vacuum-Rabi spectrum measured
using individual atomic transits from a MOT, as described by Hood et al [37]. The solid line is
the predicted spectrum based upon evolution of the master equation for maximally coupled atoms
while the dashed line represents couplings g(r) < go.

g(r) and an ensemble of atoms (figure 2(a)) [32, 33]. Similar optical normal-mode spectra
have been obtained by the group of Feld using a beam of barium atoms [34], while direct
observation of atom—field Rabi nutation in the microwave domain was made by the group of
Haroche using a beam of rubidium atoms in Rydberg excited states [35].

The brief duration of each transit and uncertainty in the instantaneous rate of atom—field
coupling presented a significant limitation on the amount of information made available per
atom in these atomic beam experiments [32-35]. Subsequent experiments instead made use
of a cloud of cold atoms cooled to sub-Doppler temperatures in a magneto-optic trap (MOT)
located a few millimetres above the cavity. When the MOT is released, some fraction of the
cold atoms fall between the mirrors, and it is possible to observe in real time their individual
trajectories and the durations of their transits [36]. Using this technique, the vacuum-Rabi
spectrum (figure 2(b)) was extracted from the transmission of a weak probe interacting with
many individual transits (each of duration 7 &~ 100 us) on an atom-by-atom basis [37].
Likewise, this technique has also enabled measurements of the nonlinear optical response of
individual atoms to drive fields corresponding to # < 1 intracavity photon [37]. It should
be noted that while each individual atom contributes significantly more information to the
spectrum in this experiment than in those with atomic beams, the data in figure 2(b) is still the
result of an ensemble average over many atoms.

3.2. The atom—cavity microscope

By way of the marriage of laser cooled atomic sources and cavity QED, as discussed above, has
come an exciting new regime in which the kinetic energy K of atoms in transit through the cavity
is comparable to the energy /g (r) associated with the atom—field coupling. In this domain, the
presence of just one photon is sufficient to alter profoundly the atom’s centre-of-mass motion.
Indeed if gy > K and the cavity is slightly detuned from the bare atomic resonance, then the
dressed state |—)1, as discussed above, is confined by an attractive pseudopotential due to the
intracavity field [38—40]. The pseudopotential wells are of depth determined as a function of
the probe intensity and the atom—cavity detuning, and have facilitated atomic trapping times
T ~ 0.5 ms.
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Figure 3. Diagram of the atom—cavity microscope. (a) Cold atoms are delivered to the cavity
mode by releasing the contents of a magneto-optic trap (MOT) a few millimetres above the cavity.
The transmission of weak probe beam is recorded using balanced heterodyne detection [38].
(b) A reconstruction of the trajectory of a single atom bound to the quantized intracavity field
with 7 = 1 photon. Animations of transits reconstructed using this technique are available at
http://www.its.caltech.edu/~qoptics/atomorbits/ .

This technique for intracavity confinement enabled the so-called atom—cavity microscope,
a protocol for reconstructing the trajectories of single atoms based upon the variations in
transmission of a weak probe beam (which also generates the trapping pseudopotential).
Experimentally, as a caesium atom enters the mode of the cavity its presence is detected in real
time. The resulting signal is used to switch rapidly the intensity of the probe, which is detuned
to the red vacuum-Rabi sideband at (wsq — f1gp), in order to form the trap, pushing atoms
towards larger values of g(r). The transmitted probe field is then monitored and recorded via
heterodyne detection. For each individual atomic transmission profile, which is indicative of
the instantaneous rate of coherent coupling to field, it is then possible to extract information
about the orbit in which the confined atoms move (such as that shown in figure 3(b)). This
work represents a first step towards addressing the motion of an atom strongly coupled to
a cavity, but is limited in the sense that the QED interaction and the trapping potential are
intertwined, precluding the ability to address and control the state of the atom while confined
by the trap.

3.3. State-insensitive cooling and trapping

While atomic confinement using the quantized cavity QED field offers an important advance
towards the realization of well-localized, trapped atoms, it remains preferable to decouple
the trap from the QED interaction. Towards this goal, a number of groups [41-44] have
successfully implemented optical dipole force traps (also known as far off-resonant traps or
FORTS) consisting of a far-detuned optical beam able to induce a dissipative, attractive force
on an atom and yet only weakly drive atomic transitions.

The principle of operation for a FORT, as applied to a simple two-level atomic model, is
rather straightforward [45]. The FORT beam, detuned by § from the resonant frequency of
the transition, w4, induces an ac-Stark shift,

2

A
of equal magnitude but opposite sign for each of the excited and ground states. For a red-
detuned field (6 < 0), an atom in its ground state with kinetic energy K < Ugip = AE4(r)
is confined in a potential which varies spatially as the intensity of the FORT beam (likewise,
an atom in its excited state will, rather undesirably, see a repulsive potential). This process
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is readily extrapolated to more complicated, multilevel systems such as the alkali atoms
commonly used in cavity QED, though the overall functional form of (9) remains similar [46].

The earliest implementations of intracavity FORT fields for cavity QED used lasers at
frequencies an integer number of cavity free spectral ranges away from the probe field [44].
In so doing, a cavity which is length-stabilized to be resonant with the TEMgy, mode of
the probe will simultaneously support the TEMgy mode of the FORT as well. The resultant
intracavity standing wave provides a series of potential wells into which sufficiently cold atoms
can be loaded. The first experiment of this sort involved trapping caesium in a FORT with
ArorT = 869 nm, characterized by a trap lifetime 7 = 28 ms, which was evidently limited by
parametric heating and FM-to-AM noise conversion due to the relatively high finesse of the
cavity at the FORT wavelength.

These early difficulties were remedied by choosing a value Agory for which the differential
ac-Stark shift between excited and ground states was very nearly zero and at which the cavity
mirrors were less reflective. Certain atomic lines, including the caesium D2 transition, have the
property that for a narrow range of wavelengths the ac-Stark shifts of the excited and ground
state manifolds are in the same (trapping) direction [47-49]. By considering couplings to the
full manifold of caesium excited states it is possible to recognize a nearly state-insensitive
trapping potential (i.e., with only small differential ac-Stark shifts) at Aporr = 935.6 nm,
colloquially referred to as the ‘magic’ wavelength of caesium [50, 41]. Indeed, it has been
shown that an intracavity FORT at this wavelength with a depth corresponding to Uy =~ 3 mK
allows for trap lifetimes 7 & 3 s ‘in the dark’ (i.e., in the absence of QED fields), likely limited
by the rate of collision with background gas, and T =~ 1 s even in the presence of a probe
field [41]. This technique constitutes a milestone in optical cavity QED, opening the door to
a myriad of experiments involving one-and-the-same atom. These exciting new experiments
are to be discussed in the next section.

The use of optical dipole traps for localization of atoms within the mode of a high-finesse
cavity has developed rapidly in the past two years. In addition to the work described above, the
group of Rempe at the Max Planck Institute in Garching has also implemented the co-resonant
FORT technique at Aporr = 785 nm for trapping rubidium [43]. The group of Chapman at
Georgia Tech has developed a novel scheme whereby an optical dipole lattice transverse to
the cavity axis acts as a ‘conveyor belt’ [51], transporting rubidium atoms into and out of a
region of interaction with a weak probe field which is used to monitor the state of the system
in real-time [42]. Beyond the use of optical traps, the groups of Walther and Blatt have made
tremendous progress towards coupling single, trapped atomic ions to high-finesse cavities
[52, 53]. While these experiments have yet to enter the regime of strong coupling, practically
limitless trap lifetimes and the powerful tools for coherent control which have already been
developed within the ion trap community [54-57] hold great promise for future integration
with optical cavities.

4. Experiments with trapped atoms

The development of a state-insensitive trap for strongly coupled atoms has not only extended
the duration of individual transits far beyond the characteristic time scales for coherent atom—
field coupling (i.e., T ~ 3 s whereas g, ! 2 30 ns), but also into a domain wherein complex
experimental protocols can be performed using one-and-the-same atom. The cavity QED
group at Caltech, working with atomic caesium, has begun exploring this domain with schemes
for the generation of single photons, with measurements of the full vacuum-Rabi spectrum for
just one atom, and with a new technique for in situ control of the system.
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Figure 4. The one-atom laser. (a) Schematic diagram of the one-atom laser. Fields 23 4 are applied
to a single caesium atom confined by an intracavity FORT, producing excitation in the TEMgg
mode of the cavity. Photons which escape mirror M, are detected by single photon-counting
avalanche photodiodes D . (b) Energy level diagram for the one-atom laser, as discussed in the
text.

4.1. The one-atom laser

An optically driven single atom bound to a resonant cavity is, in some sense, a laser extrapolated
to its fundamental, conceptual limit (theoretical descriptions of such devices have existed for a
number of years [58—67]). In this analogy, the single atom serves as a gain medium which, as
it ‘lases’, couples photons into the resonant mode of the cavity. However, the emission from
such a device (like the device, itself ) is qualitatively very unlike a conventional (semi-classical)
laser, exhibiting a variety of manifestly quantum properties.

In a recent experiment to explore these phenomena [68, 69], a field 25 is applied from the
side of the cavity (i.e., transverse to the cavity axis) which pumps the caesium atom from the
(6812, F = 3) ground state to the (6P3,,, F' = 3') excited state (see figure 4). The atomic
population is rapidly transferred to (65,2, F' = 4) via strong coupling to the cavity (which is
tuned to be resonant with the (6P3/2, F' = 3’ — 6S,,, F = 4) transition), leaving a single
excitation in the ‘laser’ mode. A second field €24, continuously applied to the atom, pumps to
(6P3,, F' = 4') from which spontaneous emission returns the system to its (initial) ground
state. As the resulting photons exit the cavity at a rate 2«, their arrival times are recorded
using a pair of single photon-counting avalanche photodiodes. Experimentally, we observe
‘thresholdless lasing’ and a maximum intracavity photon number which is rate-limited due to
the (irreversible) recycling of the one atom through its energy levels by 23 4. Moreover, the
one-atom laser exhibits photon antibunching and sub-Poissonian photon statistics, evidence
that it is a manifestly quantum light source. For comparison with our experimental results, we
have extensively analysed the theory of ‘lasing’ in the strong-coupling regime, as discussed
in [69].

4.2. Deterministic generation of single photons

While the one-atom laser produces a nonclassical stream of photons, it is also possible to
add an extra layer of control to the system in order to reliably and deterministically produce
one photon on demand. We have shown that by iteratively pulsing the €23 4 beams, a single
photon can be generated in the cavity mode with near unit efficiency [70]. Operationally,
the Q3(¢) pulse, in concert with an atom strongly coupled to a cavity on resonance with
(6P32, F' =3 — 6P1)5, F = 4), drives coherent, adiabatic transfer of atomic population
between hyperfine ground states [71]. Simultaneously, this process introduces a single photon
into the intracavity field, which subsequently escapes with a spatial profile fixed by the TEMyy
mode of the cavity and with a temporal profile determined by that of the 23(¢) pulse. A short
pulse of €24 light incoherently repumps the atom to the F = 3 manifold and resets the system
to generate subsequent photons.
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Figure 5. Single photon generation on demand. (a) The temporal profile of single photons
generated from one caesium atom strongly coupled to a cavity [70]. The full-width at half-
maximum is Trwgm = 120 ns and the long tail is the result of inhomogeneous preparation of initial
Zeeman states. (b) The correlation function C(7) as a function of time delay t for counts from two
single photon-counting photodiodes. The significant suppression of the peak at ¢ = 0 indicates
that spurious two-photon events are rare.

In the regime of strong coupling, the rate g(r) is sufficiently large that single photons are
generated within the cavity with inferred efficiency ¢ = 1.15 &£ 0.18, where the uncertainty
is determined from measurements of systematic losses and rare occurrences of two-photon
events. Unpolarized photons escape the cavity with efficiency (69 &£ 10)% and are detected by
two photoelectric detectors at the ports of a 50/50 beam splitter, leading to an overall detection
efficiency of ~2.4% (intracavity photon to photoelectric event). The temporal full-width at
half-maximum of the photons is tggwm = 120 ns for an Q3(¢) pulse of uniform intensity
over a duration of 1 us (see figure 5(a)). The mean trap lifetime for a single atom during
this process was 140 ms, limited by heating from Q3 4, allowing 1.4 x 10* single photons to
be generated from each individual atom. The small probability of a two-photon event taking
place is clearly evident from the suppression of a peak at = 0 in the correlation function
between the two detectors, figure 5(b). As a metric for how closely this system approximates
an ideal single-photon source we consider the quantity R, which quantifies the probability
of two-photon events relative to a coherent state (R ~ 1 for a weak coherent state and
approaches infinity for an ideal single-photon source). Averaged over all generation attempts,
we measure R = 15.9 + 1.0 which approaches R &~ 150 when considering only attempts
occurring late in the trapping interval. We thereby demonstrate the predominantly single-
photon character of our source and hypothesize that rare two-photon events are principally
the result of ‘contamination’ from rare occurrences in which two atoms are simultaneously
loaded into the trap, both generating photons [70].

The non-negligible likelihood of two or more atoms being loaded into the FORT is an
unavoidable consequence of our Poissonian technique for introducing cold atoms to the cavity.
As in earlier work, a cloud of ~10° sub-Doppler cooled caesium atoms is released from a
MOT and allowed to fall freely through the narrow space between the two cavity mirrors
which, due to its prohibitive geometry, admits only a few atoms per attempt. We can control
the mean number by adjusting the efficiency of the cooling beams which prepare the MOT,
but not without detriment to the frequency with which we load single atoms. As a solution
to this problem, the Caltech group has developed a technique whereby we can observe in real
time discrete, ‘step-like’ increases in the transmission of probe beam as, one-by-one, multiple
atoms are heated out of the FORT [72]. In future work, this protocol will provide an efficient
means for ensuring that precisely N = 1 atom is always loaded, or that a certain number
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N > 1 is always loaded as required by some schemes for processing quantum information
[27, 73]

4.3. Intracavity Raman transitions and sideband cooling

Beyond these advances enabled by the state-insensitive FORT [41, 70, 72], there exist a
number of experimental parameters which remain inaccessible without more precise control
over the atom and its motion. Among these are the location of the atom r relative to the QED
field (and, implicitly, the range of coupling rates g(r) that atom experiences as it moves within
the mode of the cavity) and the characteristics of the ambient magnetic field at r. In order to
resolve these concerns and gain some a priori knowledge about atoms trapped in our FORT,
we have developed a novel technique for driving stimulated Raman transitions between the
hyperfine ground states of an atom in the FORT.

The presence of the cavity places certain geometric constraints on the beams which
drive these transitions, so we have chosen to use the intracavity FORT field not only as
a trap but also as one arm of the characteristic Raman A configuration. The second
arm is an auxiliary ‘Raman’ laser, phase-locked and orthogonally polarized relative to the
FORT and offset by a frequency Araman = Anpr + 8 where Agr = 9.192632 GHz, the
caesium 6S5;,,(F = 3, F = 4) splitting. § is a variable frequency detuning. Both lasers
drive the same cavity mode, with the Raman beam off cavity resonance by Agryman, and
generate intracavity fields with individual Rabi frequencies (S2rorr, 2Raman)- In the limit that
A" = (va — vporT) > {QF, @&, ARamans 8, ¥}, (Where va, vporr are the frequencies of the
caesium D2 line and the FORT laser, respectively) the net effective Rabi frequency is given by

SZI:ORTSZRamzm
2A '

As the detuning § is varied, it is possible to map out a spectrum of resonances between the
various Zeeman and motional substates of the two hyperfine ground manifolds. After an atom
is cooled into the FORT, a small magnetic field is applied along the cavity axis to break any
degeneracy of Zeeman states so the atoms may be optically pumped into the (F' = 3, mp = 0)
ground state. The Raman laser at a fixed detuning § is then pulsed ON for a duration Traman
in order to drive a Oraman = TrRamanS2f rotation in the (F = 3, 4) basis. Next, a probe pulse
resonant with the (F = 4 — F’ = 5') transition detects whether the atom is in the F = 4
ground state (using the type of cavity QED interaction discussed in the first section; large
(small) transmission of the probe means the atom is decoupled from (coupled to) the cavity,
namely in the F = 3 (F = 4) ground state). Many iterations of this procedure yield the
probability P (§) to drive a Raman transition at that specific detuning. As § is varied, the result
is a spectrum such as that in figure 6(a), showing a clearly resolved peak corresponding to
the carrier (F = 3,mr = 0) < (F = 4, my = 0) transition (with linewidth Q) as well
as sidebands corresponding to An = =2 vibrational transitions, which will be discussed in
detail, below. By scanning over a broader range, it is possible to map out the full spectrum of
Amp = O transitions (or Amr = =1, in a transverse bias field) from which information about
the magnitude and direction of the local magnetic field can be extracted. Similarly, when the
Raman pulse duration Traman at 6 & 0 MHz is scanned in steps much smaller than le, it is
possible to map out the so-called ‘Rabi flopping,” the coherent transfer of atomic population
between ground states (figure 6(b)).

Within the context of atomic systems bound to harmonic potentials, Raman transitions
between quantized vibrational levels have become a standard tool. Raman sideband cooling
is an essential component of experiments involving trapped ions [54] and has also been
demonstrated for alkali atoms in free space [74, 75]. In the Fock basis we denote the

Qp@t) = (10)
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Figure 6. A Raman spectrum. (a) The ‘carrier’ transition (mrp = 0 <> mp = 0) and An = 2
motional sidebands measured by driving stimulated Raman transitions between the hyperfine
ground states of a single caesium atom confined in an intracavity FORT. Imposed over the trace
are the results of cooling measurements undertaken on each of the resonances. The extended trap
lifetime observed by driving the red transition constitutes empirical evidence of Raman sideband
cooling. (b) ‘Rabi flopping’ on the Am r = 0 ‘carrier’ transition as discussed in the text.

vibrational state of an atom in our FORT as n. By tuning our Raman beam (blue, red) of
the carrier transition by twice the harmonic frequency of our FORT, it is possible to excite the
atom from 7z to (n +2, n — 2), the two sidebands observed in figure 6(a). Note that because the
fields associated with the Raman and FORT beams are symmetric with respect to the boundary
conditions set by the cavity, only even numbered An transitions are allowed. The positions of
the sidebands in the figure correspond reasonably well to the expectation £2vy >~ +1.1 MHz,
where vy is the vibrational frequency for harmonic motion at the antinode of the FORT, which
is independently determined from the FORT and caesium parameters. However, we do not yet
understand the observed lineshapes nor the loss of contrast evidenced in figure 6, which may
be due to the considerable anharmonicity of the FORT for weakly bound atoms. Preliminary
attempts at cooling centre-of-mass motion by driving Raman vibrational sidebands empirically
suggest that we can extend the lifetime of trapped atoms within our cavity, as indicated in
the bar plots superimposed over the Raman scan. In a series of trials, atoms loaded into the
FORT were driven on either of the blue, red or carrier transitions while being probed at regular
intervals. For each, the corresponding trapping durations T, represented by the relative sizes
of the bars, and probabilities P that an atom loaded at the beginning of a 1 s long trial would
survive until the end of the trial were recorded. On average, atoms driven on the red (cooling)
sideband remained in the cavity substantially longer than those driven on the other motional
transitions.

4.4. The vacuum-Rabi spectrum of one-and-the-same atom

Assisted by the capability to perform axial cooling using Raman transitions, our group was
recently able to undertake measurements of the vacuum-Rabi spectrum for one-and-the-same
atom. This is in contrast to the measurements discussed above [32, 37] and other recent
observations made with atoms trapped in a FORT [76], all of which require averaging over
a large ensemble of atoms (e.g., 10°~10* atoms in [76]). After a single atom is loaded into
the FORT, a probe beam of frequency w,,, varied over a range near the atom—cavity resonance
(wa = wc,), is mode-matched into the cavity, and the transmission of the probe T (w)) is
recorded. After each probe interval, a cycle of Raman sideband cooling is interspersed before
the probe frequency is iterated forwards and the process repeated. By choosing only those
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Probe Detuning @, (MHz)

Figure 7. Vacuum-Rabi splitting of one-and-the-same atom. The complete vacuum-Rabi
transmission spectra, T'(w)) for six atoms, selected at random from a pool of 28 such spectra.
The error bars represent statistical uncertainties. The blue trace is the solution of the master
equation for the system [77].

trials for which the empty cavity resonance at w, = wc, is suppressed (i.e., those with strong
resonant absorption indicating that an atom is coupled to the cavity), we are able to obtain
the vacuum-Rabi spectrum for precisely one atom (six of which, for six separate atoms, were
randomly selected and are shown in figure 7) [77].

For comparison, also included in figure 7 is the solution to the steady-state master equation
for this system, incorporating only known experimental parameters and averaged over the top
1/3 of FORT wells for which g(r) is closest to its maximum value, go (i.e., g(r) = 0.87go).
The results are in quite good agreement with the data, and the characteristic two peaked
vacuum-Rabi structure is clearly present for each atom. The asymmetric features of the
spectrum (i.e., peak heights, centroid locations) are principally the result of the small Zeeman
state-dependent ac-Stark shifts induced by the FORT in conjunction with optical pumping
effects due to the probe. In summation, these spectra contain detailed quantitative information
about g(r), indicating that atoms trapped and cooled within the FORT exist in a narrow range
of near maximal values. This result is emblematic of the type of measurement which we
expect the Raman technique to enable in the future.

5. Conclusion

We have discussed the evolution of experiments in optical cavity quantum electrodynamics,
emphasizing those recent experiments enabled by intracavity state-insensitive optical dipole
trapping. This work includes a demonstration of a one-atom laser, deterministic generation
of single photons, the capacity for driving stimulated Raman transitions between hyperfine
ground states of a trapped atom, and the observation of the vacuum-Rabi spectrum, the
hallmark of strong coupling, for one-and-the-same atom.
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In recent years, many advances in cavity QED have been driven by an interplay with
quantum information science [78]. In the near future, the tools discussed above will begin
to play an important role as it becomes possible to perform complex quantum information
protocols [27-30]. In particular it may even be possible, via Raman sideband cooling, to enter
a regime requiring a quantized treatment for all degrees of freedom in QED, namely the state
of the atom, its centre-of-mass motion, and the field to which it is coupled. This hearkens
back to Einstein and his introduction of the quantum hypothesis, which, one hundred years
ago, set the stage for the remarkable experimental advances of today.
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Photon blockade in an optical cavity with one

trapped atom

K. M. Birnbaum!, A. Boca', R. Miller!, A. D. Boozer', T. E.

At low temperatures, sufficiently small metallic' and semicon-
ductor? devices exhibit the ‘Coulomb blockade’ effect, in which
charge transport through the device occurs on an electron-by-
electron basis’. For example, a single electron on a metallic island
can block the flow of another electron if the charging energy of the
island greatly exceeds the thermal energy. The analogous effect of
‘photon blockade’ has been proposed for the transport of light
through an optical system; this involves photon—photon inter-
actions in a nonlinear optical cavity*"’. Here we report obser-
vations of photon blockade for the light transmitted by an optical
cavity containing one trapped atom, in the regime of strong atom—
cavity coupling'®. Excitation of the atom—cavity system by a first
photon blocks the transmission of a second photon, thereby
converting an incident poissonian stream of photons into a sub-
poissonian, anti-bunched stream. This is confirmed by measure-
ments of the photon statistics of the transmitted field. Our
observations of photon blockade represent an advance over
traditional nonlinear optics and laser physics, into a regime
with dynamical processes involving atoms and photons taken
one-by-one.

An analogy between electron transport in mesoscopic electronic
devices and photon transport through strongly coupled optical
systems was originally suggested in ref. 5. These authors proposed
that an effect similar to Coulomb blockade for electrons' might be
possible for photons by using photon—photon interactions in a
nonlinear optical cavity’. In this scheme, strong dispersive inter-
actions enabled by electromagnetically induced transparency (EIT)
cause the presence of a ‘first’ photon within the cavity to block the
transmission of a ‘second’ photon, leading to an ordered flow of
photons in the transmitted field.

After resolution of an initial difficulty®, subsequent work has
confirmed that such photon blockade is indeed feasible for a single
intracavity atom by way of a multi-state EIT scheme’. Photon
blockade is possible in other settings, including in concert with
Coulomb blockade' and via tunnelling with localized surface plas-
mons''. Photon blockade has also been predicted for a two-state
atom coupled to a cavity mode**'>"*. As illustrated in Fig. 1a, the
underlying mechanism is the anharmonicity of the Jaynes—
Cummings ladder of eigenstates*'*. Resonant absorption of a photon
of frequency w _ to reach the state |1, —) (where |n, 4+(—)) denotes
the higher- (lower-) energy eigenstate with n excitations) ‘blocks’ the
absorption of a second photon at » _ because transitions to |2, =) are
detuned from resonance.

Whereas electrons interact directly via Coulomb repulsion, photon—
photon interactions must be mediated by matter. Furthermore,
verification of this effect requires measurements of the quantum
statistics of the field; in contrast, Coulomb blockade can be inferred
directly from mean transport. Scattering from a single atom in free
space, for example, provides a fundamental example of photon
blockade', albeit with the fluorescent field distributed over 4w and

Northup' & H. J. Kimble'

the flux limited by the rate of spontaneous decay <. In contrast,
cavity-mediated schemes offer the possibility of photon emission
into a collimated spatial mode with high efficiency and at a rate set by
the cavity decay rate k, which can be much larger than +y. Achieving
photon blockade for a single atom in a cavity requires us to operate in
the regime of strong coupling, for which the frequency scale g
associated with reversible evolution of the atom-—cavity system
exceeds the dissipative rates (v, k) (ref. 14).

Here we report observations of photon blockade in the light
transmitted by an optical cavity containing one atom strongly
coupled to the cavity field. For coherent excitation at the cavity
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Figure 1| The atomic level structure used for implementation of the photon
blockade effect, and a simple diagram of the experiment. a, Atomic level
diagram showing the lowest-energy states for a two-state atom of transition
frequency w 5 coupled (with single-photon Rabi frequency g,) to a mode of
the electromagnetic field of frequency w ¢, with ws = wc = wy (ref. 15). Two-
photon absorption is suppressed for a probe field w, (arrows) tuned to excite
the transition [0)— |1, —), w, = wy — go, leading to g'¥(0) < 1 (ref. 13).

b, Eigenvalue structure for the (F = 4,mp) < (F' = 5',my) transition
coupled to two degenerate cavity modes [,,., as discussed in the
Supplementary Information. Two-photon absorption is likewise blocked for
excitation tuned to the lowest eigenstate (arrows). ¢, Simple diagram of the
experiment. BS, beam splitter.
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input, the photon statistics for the cavity output are investigated by
measurement of the intensity correlation function ¢g(7), which
demonstrates the manifestly nonclassical character of the transmitted
field. Explicitly, we find ¢?(0) =(0.13 £ 0.11) < 1 with ¢g®(0) <
g'P(7), so that the output light is both subpoissonian and anti-
bunched”. We find that g'?(7) rises to unity at a time 7 = 45ns,
which is consistent with the lifetime 7— = 2/(y + k) = 48 ns for the
state |1,—) associated with the blockade. Over longer timescales,
cavity transmission exhibits modulation arising from the oscillatory
motion of the atom trapped within the cavity mode. We use
this modulation to make an estimate of the energy distribution for
the atomic centre-of-mass motion and infer a maximum energy
E/kg = 250 K, where kg is the Boltzmann constant

The schematic of our experiment in Fig. 1c illustrates the Fabry—
Perot cavity formed by mirrors (M;, M,) into which single optically
cooled caesium atoms are loaded. Atoms are trapped within the
cavity by a far-off-resonance trap (FORT), which is created by
exciting a TEM,, cavity mode at Ap = 935.6 nm (ref. 18). To achieve
strong coupling, we use the 65, F = 4— 6P5),, F' =5’ transition
of the D2 line in caesium at Ay = 852.4nm (subscript A refers to
‘atom’), for which the maximum rate of coherent coupling is
g0/2m =34MHz for (F =4, mp = *4)— (F' =5',m; = £5). The
transverse decay rate for the 6P3, atomic states is /2w = 2.6 MHz,
while the cavity field decays at rate k /2w = 4.1 MHz. The parameters
of the cavity are further discussed in the Methods.

A variety of factors make our atom—cavity system more complex
than the simple situation described by the Jaynes—Cummings eigen-
states, including most significantly that (1) the cavity supports
two modes /,,, with orthogonal linear polarizations (J,2) near Ay =
852.4nm as described in the Methods section, and (2) a multiplicity
of Zeeman states are individually coupled to these modes for
transitions between the manifolds (F =4,mp) < (F' =5",my). An
indication of the potential for this system to achieve photon blockade
is provided in Fig. 1b, which displays the actual eigenvalue structure
for the first two excited manifolds obtained by direct diagonalization
of the interaction hamiltonian, as discussed in the Supplementary
Information. As for the basic two-state system, excitation to the
lowest-energy state in the one-excitation manifold ‘blocks’ sub-
sequent excitation because the transitions to the two-excitation
manifold are out of resonance.

To substantiate this picture quantitatively, we present in Fig. 2
theoretical results from the steady-state solution to the master
equation in various situations, all for the case of coincident atomic
and cavity resonances wa = wc, = wo. (Subscripts C; and C, refer to
the cavity resonances near A, and Ap, respectively). Beginning with
the ideal setting of a two-state atom coupled to a single cavity mode,
we display in Fig. 2a results for the probe transmission spectrum
T(w}) and the intensity correlation function g(2>(0) of the field &,
transmitted by mirror M, for excitation by a coherent-state probe &,
of variable frequency w, incident upon the cavity mirror M;. Clearly
evident in T(w,) are two peaks at w, = w+ = wy * gy associated with
the vacuum-Rabi splitting for the states |1, ). At these peaks, &, is
detuned for excitation |1, =)— |2, +), resulting in g¥(0) < 1 for &;.
The poissonian photon statistics of the incident probe are thereby
converted to subpoissonian statistics for the transmitted field by way
of the photon blockade effect illustrated in Fig. la. For strong
coupling in the weak-field limit, g'?(0) oc (k +v)* /g2 for wp, = w+
(ref. 12), hence the premium on achieving go = (k,7). By contrast,
for w, = wy = go/ V2, €, is resonant with the two-photon transition
[0)— |2, =), resulting in superpoissonian statistics with g(z)(O) > 1.
For wp = wy, there is extremely large bunching due to quantum
interference between g, and the atomic polarization'*"”.

In Fig. 2b we examine the more complex situation relevant to our
actual experiment, namely a multi-state atom coupled to two cavity
modes with orthogonal polarizations ¥, 2. Most directly related to the
simple case of Fig. 2a is to excite one polarization eigenmode with the
incident probe, taken here to be &, and to detect the transmitted field

NATURE|Vol 436|7 July 2005

€? for this same polarization, with the transmission spectrum and
intensity correlation function denoted by T.(wp), gﬁ_,?(O)7 respect-
ively. Even for the full multiplicity of states for the F=4—F =5’
transition coupled to the two cavity modes [, ,, T..(wp) displays a
rather simple structure, now with a multiplet structure in place of the
single vacuum-Rabi peak around w, = wy * go. For a probe fre-
quency tuned to the eigenvalues w, = wy * go, gg)(O) = (.7, once
again dropping below unity as in Fig. 2a.

An alternative scheme is to detect along z, but excite along
orthogonal polarization J, with the respective transmission and
correlation functions T',(wp), gﬁ)(O) also shown in Fig. 2b. Similar
to T (wp), T).(wp) exhibits a multiplet structure in the vicinity
of w, =wy * gy owing to the nature of the first excited states
of the atom-—cavity system. At the extremal w, = wo * go, g'2(0)
reaches a value g!?(0) = 0.03 much smaller than for either g(2>{0) in
Fig. 2a, or g¢?(0) in Fig. 2b, for the same values of (go, , ). Our
preliminary hypothesis is that this reduction relates to the absence of
the superposed driving field &) with the transmitted field & of
orthogonal polarization Z (ref. 20); photons in the mode I, derive
from emissions associated with the atomic components of atom-field
eigenstates.

Tuning the probe to w, = wy * go has the additional benefit of
reducing sensitivity to atomic position, which varies experimentally
owing to atomic motion and the multiplicity of trapping sites within
the cavity?'. The atomic position affects the transmission via
the position dependence of the coupling g = go/(r), where ¥ is the
TEM spatial mode at A, with maximum |¢|=1, and r is the
position of the atom. T),(wy) is small when |w, — wy| = g, so atoms
which have a lower-than-expected value of ¢ will have a reduced
contribution to the photon statistics.

An important step in the implementation of this strategy is our
recent measurement of the vacuum-Rabi spectrum T_,(w;) for one
trapped atom?'. In that work we obtained quantitative agreement on
an atom-by-atom basis between our observations and an extension
of the theoretical model used to generate the various plots in Fig. 2b.
The extended model incorporates a.c.-Stark shifts from the FORT as
well as cavity birefringence. This model predicts that corrections to
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Figure 2 | Theoretical results for the transmission spectra and intensity
correlation functions. a, T(w,), 2(0); b, T..(wp), 82(0) (dashed) and
Ty.(wp)s g;,zz) (0) (red) from the steady-state solution to the master equation.
Included are all transitions (F = 4, mp,g — (F' =5",my) with their
respective coupling coefficients g; "', as well as the two cavity modes [ e
here assumed to be degenerate in frequency (see Supplementary
Information for further discussion). The blue dotted lines indicate
poissonian statistics. Parameters are (go, &, y)/2m = (33.9, 4.1, 2.6) MHz,
and the probe strength is such that the intracavity photon number on
resonance without an atom is 0.05.
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(2)(0) due to these effects are small for our parameters, as discussed
in the Supplementary Information.

With these capabilities, we now report measurements of gyz)(T) for
the light transmitted by a cavity containing a single trapped atom. We
tune the probe &} to (wp — wp)/21w = —34MHz, near —go, and
acquire photoelectrlc counting statistics of the ﬁeld € by way of
two avalanche photodiodes (D1, D), as illustrated in Fig. 1c. From
the record of these counts, we are able to determine g(z)(T) by using
the procedures discussed in ref. 22. Data are acqulred for each
trapped atom by cycling through probing, testing, and cooling
intervals (of durations Atprohe = 500 s, Atiese = 100 pus and Atcoo =
1.4 ms, respectively) using a procedure similar to that of ref. 21. The
test beam is polarized along Z and resonant with the cavity. A
repumping beam transverse to the cavity axis and resonant with
6S1/2, F=3—6P3),, F' =4 also illuminates the atom during the
probe and test intervals. This beam prevents accumulation of
population in the F= 3 ground state caused by the probe off-
resonantly exciting the F = 4 — F' = 4/ transition. All probing/cool-
ing cycles end after an interval At = 0.3s, at which point a new
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Figure 3 | Experimental measurements of the intensity correlation function
(2)(7) for incident excitation with polarization along y and detection with
orthogonal polarization 2. a, g;?(f) over the interval |7] = 1.0pus
demonstrates that the transmitted field exhibits both subpoissonian
photon statistics g;,i)(O) =(0.13 £0.11) < 1 and photon antibunching
gizz) )< gﬁ,?(T) (ref.17).b, g;?(r) over longer intervals | 7] = 10 p.s displays a
pronounced modulation due to axial motion of the trapped atom. ¢, The
Fourier transform Z(f) of ¢\ (7) with the independently determined
minimum and maximum frequencies v ,;, and v for axial motion in a
FORT well indicated by the dotted lines. g(z)(r) is plotted with 6-ns
resolution in a and with 12-ns resolution in b.
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loading cycle is initiated. We select for the presence of an atom by
requiring that T,(w, = wc,) = 0.35 for the test beam. We use only
those data records associated with probing intervals after which the
presence of an atom was detected and for which the presence of an
atom was detected in all preceding intervals. If there is no atom and
the probe is tuned to be resonant with the cavity (w, = wc,), then the
photon number in mode [, due to & is 0.21 and the polarizing beam
splitter at the output of the cavity (PBS in Fig. 1c) suppresses
detection of this light by a factor of ~94.

Figure 3 presents an example of g¥(r) determined from the
recorded time-resolved coincidences at (D, D,). In Fig. 3a, the
manifestly nonclassical character of the transmitted field is clearly
observed with a large reduction in gyz)(O) below unity, (2)(0) =
(0.13 £0.11) < 1, corresponding to the subpoissonian character of
the transmitted ﬁeld and with gﬁf)(O) < gQ)(T) as a manifestation of
photon antlbunchlng We find that g (7') rises to unity at a time
7=45ns, which is consistent with a simple estimate of 7_ =
2/(y + k) = 48 ns based upon the lifetime for the state |1, —).

Although for small |7| our observations of g}(,i)(T) are in reasonable
agreement with the predictions from our theoretical model, there are
significant deviations on longer timescales. Modulation that is not
present in the model is evident in Fig. 3b, which arises from the
centre-of-mass motion of the trapped atom. In support of this
assertion, Fig. 3c displays the Fourier transform g(f) of g'?(7),
which exhibits a narrow peak at frequency f, = 535kHz just below
the independently determined frequency », = 544 kHz for harmonic
motion of a trapped atom about an antinode of the FORT in the axial
direction x. This modulation is analogous to that observed in ref. 23
for g®(7) for the light from a single ion, which arose from micro-
motion of the ion in the radio-frequency trap.

Here, U(r)=U, sin2(2'n'x/)\cz)exp(—ZpZ/WZCZ) is the FORT
potential, which gives rise to an anharmonic ladder of vibrational
states with energies {E,,}. Here m = 0 to 1 ,,,, = 99 correspond to
the bound states in the axial dimension for radial coordinate p =
\/y*+22=0. The anharmonicity leads to the observed offset
fo < v due to the distribution of energies for axial motion in the
FORT well. Indeed, the frequency vyin = (E,,,,. — —1)/h at the
top of the well is approximately half that at the bottom of the well,
vo = (E; — Ey)/h. By comparing the measured distribution of fre-
quencies exhibited by g(f) with the calculated axial frequencies {7},
we estimate that those atoms from which data was obtained are
trapped in the lowest-lying axial states m =< 10, which corresponds to
a maximum energy E/k = 250 uK. This energy estimate is consist-
ent with other measurements of g(2)(7') that we have made, as well as
the Fourier transform of the record of the transmitted intensity and
the transmission spectra of ref. 21.

We have demonstrated photon blockade for the transmission of an
optical cavity strongly coupled to a single trapped atom*®'>'?. The
observed nonclassical photon statistics for the transmitted field result
from strong nonlinear interactions at the single-photon level, in
analogy with the phenomena of Coulomb blockade for electron
transport' . Extensions of our work include operation in a pulsed
mode, as was analysed in ref. 5, thereby realizing a source for single
photons ‘on demand’*. As we improve the effectiveness of our
cooling procedure, we should be able to explore the dependence of
gyz)('r) on probe detumng, wp — wp, as well as to move to higher levels
of excitation to increase the intracavity photon number towards
unity and the output flux towards the maximum value <« for
subpoissonian photons.

mmax

METHODS

Cavity and detection parameters. The physical length of the cavity used in this
work is 42.2 pm and the finesse is 4.3 X 10°. The cavity length is independently
stabilized such that a TEM,, longitudinal mode at A¢, is resonant with the free-
space atomic transition at A  and another TEM, mode at Ac, is resonant at A
At the cavity centre x = 0, the mode waists wc,, = {23.4,24.5} pm at Ac , =
{852.4,935.6} nm
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The TEM, longitudinal mode for the FORT is driven by a linearly polarized
input field eporr, resulting in nearly equal a.c. Stark shifts for Zeeman states in
the 6S,/,, F= 3,4 manifold. At an antinode of the field, the peak value of the
trapping potential for these states is Uy/h= —43MHz for all our measure-
ments. Zeeman states of the 6P;), F "=5" manifold experience a similar
trapping potential, but with a weak dependence on m. (ref. 18).

Stress-induced birefringence in the cavity mirrors leads to a mode splitting
Awc, /21 = 4.4 + 0.2 MHz of the two cavity modes I,,, with orthogonal linear
polarizations (¥,2). eporr is linearly polarized and aligned along z, the higher-
frequency mode.

The efficiency for photon escape from the cavity, limited by losses inherent to

the mirror substrates, is ae; = 0.6 = 0.1. The propagation efficiency from M, to
detectors (D, D,) is ap = 0.41 £ 0.03, with each detector then receiving half of
the photons. The avalanche photodiodes (D;, D,) have quantum efficiencies
ap = 0.49 = 0.05.
Photon statistics. The transmission spectrum T(w,) is proportional to the
ratio of photon flux (8I8,> transmitted by M to the flux |g, |? incident upon My,
and normalized such that a cavity without an atom has a resonant transmission
of}lni}y, ie. T(wp = we,) =1 For a field with intensity operator f(t),g(z)(r) =
CIOIE+7) )/ 1(8) : )(: I(t + 7) : ), where the colons denote time and normal
ordering (ref. 17). g}(,i)(T), displayed in Fig. 3a and shown with a 6-ns resolution,
has been corrected for background counts due to detector dark counts and
scattered light from the repumping beam. Without this correction, ¢{2(0) =
(0.18 = 0.10) is directly derived from the recorded counts.
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Ultrahigh- Q toroidal microresonators for cavity quantum electrodynamics
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We investigate the suitability of toroidal microcavities for strong-coupling cavity quantum electrodynamics
(QED). Numerical modeling of the optical modes demonstrate a significant reduction of the modal volume
with respect to the whispering gallery modes of dielectric spheres, while retaining the high-quality factors
representative of spherical cavities. The extra degree of freedom of toroid microcavities can be used to achieve
improved cavity QED characteristics. Numerical results for atom-cavity coupling strengthtical atom
numberNy, and critical photon numbaen, for cesium are calculated and shown to exceed values currently
possible using Fabry-Perot cavities. Modeling predicts coupling @t2s exceeding 700 MHz and critical
atom numbers approaching¥an optimized structures. Furthermore, preliminary experimental measurements
of toroidal cavities at a wavelength of 852 nm indicate that quality factors in exces$ ofiibe obtained in
a 50.um principal diameter cavity, which would result in strong-coupling values(@f(2),ng,Nog)
=(86 MHz,4.6x 1074,1.0x 10°3).

DOI: 10.1103/PhysRevA.71.013817 PACS nuntber42.50.Pq, 32.806-t, 42.50.Ct, 42.60.Da

I. INTRODUCTION record coupling efficiencies to an optical figér7] (the me-

The use of an optical microcavity can greatly enhance th&ium of choice for low-loss transport of classical and non-
interaction of an atom with the electromagnetic field suchclassical state$18]) is fundamentally important in CQED
that even a single atom or photon can significantly chang&nd bears promise for realizing quantum networks.
the dynamical evolution of the atom-cavity syste). Recently, a new type of whispering-gallery-mode optical
Achieving the regime of “strong couplind2,3] is critically ~ microcavity was demonstrated, which not only retains the
dependent on the characteristics of the optical cavity an#igh-quality factors of spherical cavities, but also has signifi-
generally requires the optical modes to be confined in a smafiant advantages in fabrication reproducibility, control, and
mode volume for extended periods of tirf@r equivalently =~ mode structure. These cavities consist of a toroidally shaped
high Q facton). silica cavity supported by a silicon pillar on a microelec-

Recent experimental realizations of strong coupling havdronic chip[19]. The toroidal cavity shape allows an extra
employed high-finesse Fabry-Pei®P) optical microcavi- level of geometric control over that provided by a spherical
ties[4—9]. Our experiments at Caltech include the realizationcavity and thus begs the question as to how these structures
of an “atom-cavity microscope” with a single atom bound in compare with silica microspheres and other microcavity de-
orbit by single photon$4] and the development of a laser signs for strong-coupling cavity QED. In this paper we nu-
that operates with “one and the same” atph®]. Fabry- merically investigate the suitability of toroidal microcavities
Perot cavities, while possessing ultrahigh-quality factors andior strong-coupling cavity QED experiments, and for pur-
finesse, are difficult to manufacture and control, requiringPoses of comparison, we focus on the interaction with atomic
sophisticated dielectric mirror coatings as well as accuratéesium [4,20]. We show that toroid microcavities can
feedback for resonant wavelength control. Due in part tachieve ultrahigh-quality factors exceedind® While simul-
these reasons, there has been increased interest in other d@neously obtaining very large coupling rates between the
crocavity systems which not only can address some or all o¢avity and a cesium atom. It is found that these cavities not
the limitations of Fabry-Perot cavities, but which in principle only surpass the projected limits of FP technol$g9], but
can have improved optical properties. also either exceed or compare favorably to other cavity de-

Based upon the pioneering work of Braginsky and col-signs such as photonic band-gap devif2,22. Last, we
leagues[11], whispering-gallery-mode cavities have also present preliminary experimental measurements of quality
been investigated for cavity QEBCQED) experiments for  factors for toroidal cavities at a wavelength of 852 nm, suit-
many yearg§12]. Experimental studies have demonstragd able for strong-coupling CQED with atomic cesium. These
factors approaching #in a silica microsphere whispering results show that currently attainab@ values are already
gallery cavity [13,14, with values exceeding $Oreadily — quite promising.
achievable over a broad range of cavity diameters and wave-
lengths. The combination of t_heir very low cavity Io_sse_s, Il. STRONG COUPLING IN AN ATOM-CAVITY SYSTEM
small mode volumes, and their relative ease of fabrication
makes them promising candidates for experiments in CQED The coupling rateg between an atomic system and an
[15,16. Furthermore, the ability to couple these cavities withelectromagnetic field is related to the single-photon Rabi fre-
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quency{Q=2g and can be expressed in terms of the atomic
and cavity parameters ]

9(r) = ¥, |E()/Emad \Val Vi, 1)

V,=3c\¥(47y)), (2

where y, is the transverse atomic dipole transition rate,

[E(r)/ Iima)J denotes the normalized electric field strength at
the atom’s locatiom, V, is a characteristic atomic interaction
volume (which depends on the atomic dipole transition rate,
the transition wavelength, and the speed of light), andV,,

is the cavity-electromagnetic-mode volume. Assuming the
atom interacts with the electromagnetic field for a tiffe 38.0kV X600
strong atom-field coupling occurs if the rate of coupling ex-

iacinati i i -1
ce_eds all d|_SS|pat|ve mechanlsr_nstg%(K,yl,T )'_ In . FIG. 1. Scanning electron micrograph of a toroidal microcavity.
this expressiomn d_enotes fche cavity field decay rate, given in The principal and minor diameters are denoted byand d,
terms of the cavity quality facto® by «=mc/(\Q). The respectively.

degree of strong coupling can also be related to a set of
normalized parametefd],

Ill. TOROIDAL MICRORESONATORS

Ny = ﬁ/(zQZ), (3) Toroidal microresonators are chip-based microcavities
that possess ultrahigh- (>10°) whispering-gallery type
) modes[19]. The realization of ultrahigl chip-based reso-
No = 2y, x/(g°), (4) nators allows improvements in fabrication and control, while
) . L additionally allowing integration with complementary opti-
wheren, is the critical photon number, which is the number .| * mechanical, or electrical components. In brief, these
of photons required to saturate an intracavity atom, M8 egonators are fabricated by standard lithographic and etch-
the critical atom number, which gives the number of atom§g techniques, followed by a laser-reflow process, as out-
required to have an appreciable effect on the cavity transmisineq in Ref.[19]. The combination of thermal isolation of
sion. Note thalNo, o) <1 provides a necessary but not suf- he injtial preform periphery and thermal heat sinking of the
ficient condition for strong coupling. _ preform interior through the strong heat conduction of the
Examining these parameters, we see that only the criticaljjicon support pillar results in a preferential melting of the
atom numbeN, > Vi,/Q is dependent on the cavity-loss rate preform along the disk periphery under g@ser irradiation.
(or equivalentlyQ facton. It is the possibility of realizing  syrface tension then induces a collapse of the silica disk
extremely low critical atom numbers with ultrahighmicro-  preform, resulting in a toroidally shaped boundary, with the
cavities that has fostere(_j the investigation of silica micro+jng) geometry controlled by a combination of irradiation
spheres for strong-coupling CQED experiments. However,y and exposure time. Importantly, as the optical mode re-
the geometry of a spherical dielectric dictates a definite relagjges in the extremely uniform and smodteflowed pe-
tionship between cavity-mode volunw, and the associated riphery of the structure, the quality factors of optical
quality factor Q and, hence, of the value of the coupling \hispering-gallery modes can achieve ultrah@hperfor-
parameterg oV, " while still maintaining ultrahigh-quality mance, exceeding $0Figure 1 shows a scanning electron
factors[23]. This is a result of the fact that to achieve large micrograph of the side view of a typical toroidal microcavity.
atom-cavity coupling rategcomparable to or exceeding Quality factors as high as ¥10° at a wavelength of

those of FP cavitigshe cavity diameter must be made small 1550 nm (corresponding to a photon lifetime 6£300 ng
[8-um-diameter sphere giveg (2m) ~740 MHz] inorderto  haye been measuréad.

both lower the modal volume and to increase the electric

field strength at thg atomic po;itiaﬁassumec_l to _be the cavity IV. MICROTOROID NUMERICAL MODELING

surface at the point of maximum electric field strength

However, at the optimum radius for atom-coupling strength, In order to investigate the properties of microtoroids for
the tunneling loss of the microcavity results in a low achiev-CQED, this paper will focus on thB, transition of cesium
ableQ factor (Q=4x 10%, thereby raising the critical atom which occurs at a wavelength of 852.359 fign /27
number. While the relatively large mode volumes of silica=2.6 MHz) [20], with scaling to other systems accom-
microsphere cavities preclude them from competing with ul-plished in the fashion of Ref23]. Fundamentally, the cou-
trasmall mode volume cavitiesuch as photonic band-gap pling between an atom and a cavity field can be specified by
cavitie9 on the basis of coupling strength alone, there is thdour parameters: the atomic transition moment, the cavity
possibility to access simultaneously both ultrahighand field strength at the atom’s location, the cavity mode volume
small mode volume, using toroidal microresonators. V. and the cavity quality facto®. Since the optical modes
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FIG. 2. Electric field magnitude for the whispering-gallery

) A ) FIG. 3. Electric field profiles for a toroidal cavity with a princi-
modes of a sphericaltop row) cavity of diameter 1&m and a

; . . L . pal diameterD=20 um and minor diameterd=20, 12, 6, 3, 1.5,
toroidal cavity(bottom row with principal diameter of 1m and 5,4 0 75,m. The calculations correspond to a TM-polarized mode
a minor diameter of Jum. The left(right) column shows the TE- oo 850 nm. The optical mode behaves as a whispering-gallery-
(TM-) polarized mode near 850 nm. The arrows indicate the locatype mode until the minor diameter is below approximately Atb,

tion of the maximum external electric figld sFrength, whgre We 8S7¢ \hich point the mode approaches that of a step-index optical
sume the atom is located. The dotted lines in the two-dimensionaly ., [28]

field distribution indicate the cross section where the electric field is
displayed.

_ S ) o ) ) proximate expressions for the optical behavior of these struc-
are confined to the interior dielectric in whispering-gallery-i,res for both the low transverse compressispherelike
type resonators, the atom can interact only with the evanesy,q high transverse compressiéstep-index, fiberlike re-
cent field of the cavity mode. In the following discussion, thegimes, we are mostly interested in the intermediate geometri-

?r:orr; IS fi‘sf]uvrcﬁdr totﬁe Iolcai(:,id ?iefg tr:re ;e?ﬁ niatcl)rrsurf?cecaa{l regimes, as these are both experimentally accessible and

the location where the electric Tield Srength 1S 1argest, a3etqin the most desirable properties of whispering-gallery-

illustrated in Fig. 2. For TM-polarized modédefined such . " . .

that the dominant electric field component is in the radialtype m‘croc"?“’.'“es- To agcomphsh t_h|s task, a  two-
dimensional finite-element eigenmode-eigenvalue solver was

direction this occurs at the outer cavity boundary in the d 1o ch terize th tical mod f th it h
equatorial plane, while for TE-polarized modésominant used to characterize the optical modes of the cavily over the
complete geometrical range, after explicitly accounting for

electric field component in the azimuthal-vertical direction - -
the location of the maximum external field strength is morefN€ rotational symmetry. The optical modes were calculated
complicated. As the toroidal geometry is compressed witin @ full-vectorial model, which provides the complete elec-
respect to a spheré.e., reducing the ratio of minor-to- tric field dependence. The accuracy of the numerical tech-
principal toroid diametgr the maximum field strength for a nique was carefully verified by comparison with results us-
TE-polarized mode changes from the equatorial outer cavitjng the analytical solution for a microsphere cavigy]. The
boundary to approaching the azimuthal aigee Fig. 2 results for the mode volumes, resonance wavelengths, and
While the precise localization of the atom at the cavity eva-field profiles were in good agreemeitactional error was
nescent field maximum has been analyzed in dg24i)26], less than 10 and 102 for the resonance wavelength and
such localization has not yet been achieved experimentallynodal volume, respectively Furthermore, the error in the
Nonetheless, this assumption allows a simple way to characadiation quality factor was less than 10% over a wide value
terize the relative merit of this cavity geometry with respectof radiationQ’s (10°—10'%), demonstrating that this method
to other cavity designs. Also, in what follows we will only can give the accuracy required to investigate the fundamental
consider the fundamental radial and azimuthal modes foradiation-loss limits in the cavity geometries of interest in
both polarizationsTE and TM), as they possess the smallestthis work. Due to the fact that for smaller cavity geometries
modal volumes and thus the highest coupling strengths.  the resonance wavelengths do not necessarily coincide with
The microtoroid geometry, which exhibits a dumbbell- the cesium transition of interest, the data in this work were
shaped cross section, can in most cases be considered a toregaluated by using values calculated at the closest resonance
as the presence of the supporting disk structure only affectwavelengths, both blueshifted and redshifted with respect to
the optical mode when the torus diameter becomes compahe desired resonance, to extrapolate values at the desired
rable to the radial extent of the optical mode. As shown inwavelength(the mode volumes were linearly extrapolated
Fig. 3, this point occurs when the toroid minor diaméta.,  and the radiation quality factors exponentially extrapolated
the cross-sectional diameter of the toriss below approxi- as a function of wavelength
mately 1.5um for a principal diameter of 1@&m. Further-
more, through improvements in fabrication the influence of
the toroid support can in principle be minimized. In contrast A. Mode volume
to FP and microsphere cavities, the optical modes of a toroid
do not possess analytic solutions. While one can derive ap- The optical-mode volume is determined by
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100 dimensional harmonic oscillator model. This approach re-
sults in a reduction of modal volume which scales as
90 (d/D)Y* with respect to that of a spherical cavity. This for-
mula holds for minor diameters greater than approximately
801 2 um for the principal diameters considered in this work.
For smaller diameters, the spatial confinement becomes
Fa 701 strong enough that the optical mode is additionally com-
5 60 pressed in the radial direction. This results in a faster reduc-
£ tion of modal volume, with the optical modes approaching
> 50t those of a step-index optical fibéthis occurs for a minor
diameter below approximately Am) [28]. The mode vol-
a0t ume reduces until the point where the optical mode becomes
delocalized due to the weak geometrical confinement, caus-
30} ing a finite minimum value. Determination of the exact point
of the minimum modal volume upon reduction of minor di-
20 . . ; ameter(for a fixed principal diametg¢rcan be uncertain, as
1 2 3 4 the choice of quantization volume now plays a critical role
Minor diameter fum) (as discussed aboyeFor this reason the results in Fig. 4

show the modal volume only for inner diameters down to

FIG. 4. Calculated mode volumes for a silica toroidal mi- 0.65 um. where mode volume determination was unambiau
croresonator versus minor diameter for principal diameters of 20, M 9

18, and 16um. The plot shows both TMsquaresand TE(circles . .
polarizations. As the minor diameter is reduced a slow reduction of C,aICUIat'On of the modal Vo,lume a}nd the maximum elec-
modal volume due to confinement in the azimuthal direction occurstfic field amplitude at the exterior cavity equatorial boundary
followed by a fast reduction for large confinement when the opticallS Straightforward, giving a simple way to calculate both the

mode is strongly compressed in both the radial and azimuthafoupling strength and the critical photon number. In order to
directions. obtain the cavity decay rate and the critical atom number

No, however, the cavityQ factor must be determined.

f ()| E(P) 2% B. Quality factor
V,, = Vo , (5) The radiation loss of the optical modes of a spherical
|Emad? cavity is easily found by consideration of the analytic char-
acteristic equatiof29]
where\/'Q r.epresent;s a quantizati(?n yolume of the electro- nl—m[nkij(nkR)]' _ [KRHV(KR)]’ ©
magnetic field andE| is the electric field strengtf26]. In nkRj(nkR) kRHV(KR)

these calculations, we have chosen the quantization volume
cross section to consist of a square region of approximatelyheren is the refractive index of the spherical cavithe
10 um width and height centered about the radial cavityexternal index is assumed to be upjti is the cavity radius,
boundary. This choice allows the mode volume to be deterd represents the polarization of the optical madiefor TM
mined to a good accuracy while minimizing computationaland 0 for TH, andj, (h(") represents the spherical Bessel
requirements. As a further confirmation of the validity of this (Hanke) function. The prime denotes differentiation with re-
approach, we note that the radiation loss is weak for thespect to the argument of the Bess¢lanke) function. This
range of geometries modeled in this work, resulting in only aequation accounts for radiation loss through the use of an
marginal difference in the numerically calculated mode vol-outgoing wave outside the cavity, as given by the complex
ume for different choices of quantization volume. Hankel function of the first kind. Solution of this equation
Figure 4 shows the calculated modal volume for the fun+esults in a complex wave numbler kgt ik, which deter-
damental mode of a toroidal cavity as a function of minormines both the resonance wavelen@ih=2m/kgy and the
diameter and for principal diameters ranging from radiation quality factof Q,,q=kge/ (2kim) 1.
16 to 20um. For clarity, only data for minor diameters be-  However, while the spherical solution can provide some
low 4 um are shown. Both TMsquares and TE (circles  insight into the scaling of the radiation quality factor for
polarizations are shown. The calculations show a reductioforoidal cavities where the minor diameter is lai@phere
of modal volume for both polarizations as the toroid minorlike), the radiation loss when the optical mode is strongly
diameter is decreased. This is expected when considering th@nfined (as represented by small minor diameteiss ex-
additional confinement provided by the toroid geometry bepected to decrease much more rapidly. Figure 5 shows nu-
yond the spherical geometry, as illustrated in the electric fieldnerical calculations of the radiative quality factor as the mi-
plots of Fig. 3. As the minor diameter is decreased, there isior diameter is decreased for various principal diameters of
initially a slow reduction of modal volume, which agrees 16, 18, and 2Qum. We observe an initially slow reduction of
very well with a simple model that accounts for transversethe radiative quality factor in the geometrical regime where
guiding (azimuthal directioh using an approximate one- the minor diameter exceeds the radial extent of the optical
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FIG. 5. Calculated radiation loss for a toroidal microcavity as a _!G- 6. Total quality factor for a toroidal microcavity versus
function of minor diameter, for principal diameters of 20, 18, and Minor diameter for principal diameters of 16, 18, and,2@. Both
16 um. Both TM (squares and TE (circles polarizations are TE (circles and TM (square polarizations are shown. The total
shown. The data show a slow reduction®@#s the minor diameter quality factor is composed of the radiative quality factor from Fig.
is reduced while the mode behaves primarily as a whispering® along with the silica-absorption-limite@pa=2.4x 10° at a
gallery-type mode. However, as the geometrical confinement inWavelength of 852 nm. The plots indicate that the total quality fac-
creases to such a point as the optical mode approaches that oftgy is limited by silica absorption when the principal diameter is

step-index fiber, there is a significant reduction of the quality factor/arger than 16um and the minor diameter is larger than approxi-
mately 1um. Furthermore, both polarizations have similar quality

mode (i.e., where the optical mode exhibits whispering- factors over the range of geometries studied.

gallery behavior. As the minor diameter is reduced to a level

comparable to or smaller than the radial extent of the optical

mode (step-index fiber like regime the drop-off of the ra- cation the presence of water and OH can be prevented, with

diative Q is much more dramatic, with a decrease of over arsurface scattering minimized, we will focus only on the con-

order of magnitude for a reduction of inner diameter of justtributions from intrinsic silica absorption and radiation loss.

50 nm. These two mechanisms put a fundamental limit on e
The total optical loss of a cavity has contributions ”Otpossible in these structures.

only from radiation loss, but also includes other dissipative Figure 6 shows the calculated total quality factor for vari-

mec_:hanisms, such as intrinsic material abso.rption, losses rgy,q principal toroid diameters in the range of 16428, as

sulting from both surface and bulk scattering, and Iossea function of the minor diameter. The total quality factor is

stemming from contaminates on the resonator surf&6é : _
; . ; calculated through the relation =1/ +1/
One of the dominant contaminates which adversely affects g Doter=1/Qragt 1/Qma

the cavityQ is OH and water adsorbed onto the cavity Sur_where only radiation loss and silica absorption are included.

face. While prior investigations of these loss mechanismgor principal diameters less than 18, there is a mono-

have resulted in approximate expressions for water absor onic decrease in quality factor as the minor diameter is de-

tion and surface scatterifig4,31, only very large resonators creased. This is a result of the whispering-gallery-loss in-

were studied, as opposed to the much smaller diameter caf/€2S€ due to the additional confinement. For larger principal

ties studied in this work. To obtain an improved estimate ofdiameters, the overall quality factor is clamped near the lim-
the effect of water on the small diameter cavities in thisiting value resulting from silica absorption for most minor

paper, a simple model was used which determines the fradliameters(with only a slight decrease as minor diameter is

tion of optical energy absorbed by a monolayer of waterreduced, until the minor diameter is small enough that the

located at the cavity surface. This method gives an estimatei@diative quality factor decreases below the quality factor
quality factor for a monolayer of water to be greater thandue to silica absorption. For the principal diameters studied
10'° for the case of a spherical resonator with a principalin this work, this point occurs as a minor diameter of around
diameter of 50um. While the water-limited quality factor 1 um.

will be slightly lower for the smaller principal diameter cavi-

ties in this work and also slightly lower due to the increased

overlap between the optical mode and the cavity surface in a C. Cavity QED parameters

toroidal geometry, these values are comparable to the quality

factor due solely to the intrinsic absorption of silica in the The determination of the coupling strength from the

800-nm wavelength band. As in principle with proper fabri- modal volume follows from Eq(1). Figure 7 shows the
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FIG. 7. Atom-cavity coupling parametgrvs minor diameter for
toroidal cavities having a principal diameter of 16, 18, andu20, a cavity with principal diameters of 16, 18, and 2én. Both TE

with g increasing for smaller principal diameters. Both [dircles (gjrcleg and TM (squarespolarizations are shown. The plots show
and TM (squarep polarizations are shown. The plots indicate that ot a5 hoth toroid principal diameter and minor diameter are re-

the coupling strength increases dramatically as the minor diametef,ceq; the critical photon number decreases. This follows directly
decreases below 1/&m, which is a result of the rapid reduction of from the behavior of the atom-cavity coupling paramegegs in-

mode volume and the increased electric field strength at the cavity;,iaq in Fig. 7. The calculations show that critical photon num-
surface. bers of 6x 10°® are possibléwith quality factors exceeding 1p

FIG. 8. Critical photon numberg vs minor toroid diameter for

atom-cavity coupling ratg/(2) for various toroid principal  critical atom number. Figure 9 shows the calculated critical
diameters as the toroid minor diameter is decreased. It can bgom number versus minor diameter for toroid principal di-
seen that there is a monotonic risegifor higher-aspect-ratio  gmeters of 16, 18, and 20m. The plot shows that for the
toroids (i.e., D/d), as a direct result of the compression of larger principal diameters of 18 and 20n there is a mini-

modal volume. The rate of increase @&s the minor diam-  y,ym in the critical atom number as the toroidal minor diam-
eter is reduced increases dramatically as the toroid geometry

transitions from a whispering-gallery-type mode to a
strongly confined step-index fiber-type mode. This is due not
only to the faster rate of reduction of mode volume in the
step-index fiber like regime as the minor diameter is de-
creased, but also due to the increase in electric field strengtl
at the cavity surfacgas g=|E|(V,) */?]. Note that the cou-
pling strengths shown do not correspond to the absolute 5
maximum for these structures, as this work has focused or o10 ¢
the simultaneous realization of high-quality factors and small
modal volume. Therefore, mode volumes were calculated
only down to where the radiation quality factor is equal to or
slightly exceeds 10 Also, as mentioned previously, by mak- 10
ing this restriction we prevent any uncertainty in the calcu-
lated mode volumeg&nd hencey) through the definition of
the modal quantization volume. Under these assumptions
the calculations indicate that coupling parameters exceedinc 10
700 MHz are possible.

Figure 8 shows the corresponding critical photon numbers
(No). .The rgsults reveal _that value.s as low as B0°° f"‘re FIG. 9. Critical atom numbel, vs minor diameter for a toroi-
possible, with the associated quality factors exceedinfg 10 4o microcavity with principal diameters of 16, 18, and 20n. For
As will be discussed in more detail in the next section, thissmall minor diameters the critical atom number decreases as the
value is not Only Comparable to the fundamental limit of FPprincipa| diameter increases. Both TEircles and TM (squares
technology, but also vastly exceeds that possible for fusefolarizations are shown. The plots indicate that there is a minimum
silica microspheres with a comparable quality factor. value of the critical atom number neax2.0™’ for a toroidal cavity

One of the primary reasons high-whispering-gallery-  with a principal diameter of 2@m and an inner diameter of Azm
mode cavities are promising for CQED is their very low (TM mode.

10

0.5 1 15 2 25 3 35 4
Minor diameter (um)
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eter is reduced. The minimum occurs near a minor diametecapability to obtain reproducible principal diameters is a sig-
of 1 um. This minimum arises from the clamping of the total nificant improvement over spherical cavities, the ability to
quality factor(to the quality factor resulting from silica ab- accurately control the minor diameter is particularly impor-
sorption for larger minor diameters when the principal di- tant to CQED. As noted previous[yL9], the final minor di-
ameter is greater than approximately A6 Thus, by reduc- ameter of the fabricated structures is a result of a combina-
ing the minor diameter for a fixed principal diameter, thetion of factors, which are the initial silica preform thickness,
quality factor is nearly unchanged while the couplingthe supporting p|llar size, and the laser |rrad|at|or_1 intensity
strength is monotonically increasing. The critical atom num-@nd duration. Minor diameters as small agu® at principal

ber decreases until the region where the minor diameter idi@meters as low as 12m have been realized experimen-

. . . . ta V.
such that the overalD is determined by whispering-gallery . . ,
loss. At this point the critical atom number increases aps, We have measured the quality factor of a series of fiber-

. : S per-coupled toroidal microcavities at a wavelength of
g{gﬁtr;ZlieLyhg:vzo?ﬁ;tlﬂlyé -[gr%iﬂlglt g)erot;eet?leipgmﬁ;plzlrger852 nm, using an exp_erlmental apparatus similar to previous
. ' - . .work [19,37]. The excitation laser was a New Focus \Vortex

principal diameters can offer some benefit, as the minor Q'Iaser with a tunability of 40 GHz with a center wavelength of
ameter can be compressed more strongly while maintainings, 359 nm. The laser output was double passed through an
high radiative quality fa_c_tors and, thereby, lowering the C”t"acousto-optic modulator for the purpose of performing a cav-
cal atom number. A critical atom number of approximatelyity ringdown measurement. The resulting beam was able to
2x 107" is possible using a toroid principal diameter of pe extinguished by a TTL electrical control signal, with a
20 um and a minor diameter of am. corresponding optical decay time of 15 ns. This beam was
then coupled into a single-mode 850 nm fiber and subse-
quently interacted with the toroidal resonators through the
tapered portion of the fiber. Due to the limited tuning range
of the excitation lasefwhich is less than the free-spectral

range between fundamental modes in the cavity principal

The presented numerical results indicate that toroidafliameters of interektoverlap of a fundamental resonance
cavities can theoretically obtain high values of atom-cavitywith the laser wavelength range was difficult. Obtaining an
coupling while simultaneously retaining an extremely low optical fundamental mode at 852.359 nm was achieved by
critical photon number and in particular an exceedinglythermally shifting the optical resonance through the use of a
small critical atom number. While in principle the critical Peltier heating element, which allowed tuning of the cavity
atom number can be more than 100 times smaller than arnfgsonance by up to approximately 50 GHz. Upon realization
currently demonstrated cavity, the necessity of realizing®f @ fundamental cavity resonance at the proper wavelength,
material-limited quality factors exceeding<2L0® is experi-  the intrinsic quality factor was inferred two waysig. 10:
mentally challenging. The current record for any cavity isthrough cavity ringdowrj19] and through the threshold for
9% 10° [14], in a large-diameter microsphere cavity, whereasstimulated Raman scattering2]. The results of both mea-
for toroidal cavities quality factors as high as<40® at a  surements were in agreement and resulted in a measured
resonance wavelength of 1550 nm have been reafi2df  quality factor as high ag=1.2X10% in a cavity with a
However, for cavity quality factors much larger tharfithe ~ Principal diameter of 5um and a minor diameter of Gm.
dominant dissipative mechanism in the atom-cavity system i§0r this cavity geometry, the whispering-gallery loss is neg-
the radiative decay rate of the atomic medium, which isligible (Q.q=10%%) compared to the intrinsic silica absorp-
2.61 MHz for theD, transition of cesium. For this reason tion loss, such that the overall theoretical quality factor can
more “modest” quality factors, in the range of current experi-be as high a€=~2x 10'°. We expect upon further mea-
mentally achievable valugg.g., a few hundred millionare ~ surements that this quality factor can be increased to levels
attractive. As these values are currently realizable for toroicomparable to measurements performed at a wavelength of
dal cavities at a wavelength of 1550 nm, we have investi1550 nm(4 x 10?).
gated experimentally the quality factors and fabrication lim-  While this cavity geometry is far from the optimal geom-
its for structures designed for strong coupling to the cesiungtry suggested in this paper, this structure was chosen in
transition at a wavelength of 852 nm. order to increase the likelihood of finding a fundamental

As toroidal cavities are fabricated using a combination ofresonance at 852 nm. Even for this relatively large structure,
lithography and a silica reflow process, the advantages ofavity QED parameters ofg/(2m),ng,No)=(86 MHz,4.6
lithographic control and parallelism are obtained and, in factx 10°4,1.0x 10°%) are calculated. Comparison of these val-
are a significant step forward over spherical cavities. As theies to current FP cavitidd,10,2Q indicates that even with-
shape of the initial silica preform dictates the maximum pos-out additional improvements in fabrication these results are
sible principal and minor diameter and is lithographically close in coupling strength and improved with respect to the
formed, precise control of the geometry dimensions is poseritical atom number. Additionally, if we restrict the geom-
sible. Reproducible principal diameters ranging frometry and overall quality factor to values which are currently
>100 to 1um have been fabricated. This lower value, realizable(i.e., a quality factor of 1®at a wavelength of
while currently dictated by the available laser power in our852 nm with a minor diameter of 3,am, which represents a
setup, is sufficient to obtain the range of principal diametergseasonably comfortable margin from the actual current lim-
optimally suited for CQED, as indicated above. While theits), the optimal principal diameter is 13m (this geometry

V. EXPERIMENTAL MEASUREMENT
OF MICROTOROIDS FOR STRONG-COUPLING
CAVITY QED AT 852 nm
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-10 T T atom-cavity coupling solely by changing the cavity diameter,
I )"P =852 nm 10 which is easily in the realm of current fabrication capability,
—o0} ’ but their ultra high-quality factors result in significant im-
P=53uW provement in the critical atom numbewith values ap-
. )"R =890 nm proaching 3< 10°® possible provided that silica absorption-
530 [ limited quality factors can be obtainedEven using quality
o factors in the range of a few hundred million, which is al-
540t , ] ready experimentally demonstrated, critical atom numbers
@ 0 10 20 30 40 50 around 10* are possible, which is comparable to the FP
E =22 ns limit. From the analysis of the previous section, we see that
o0 Q. =0.48 x 108 ] toroidal cavities can attain coupling strengths comparable to
L or exceeding the best values possible for either FP or micro-
-60 sphere cavities, while at the same time providing much lower
critical atom numbers. As discussed previously, this arises
~70 . . ; " from the extra level of geometrical control possible in a to-
840 860 880 900 920 940 roidally shaped cavity, which allows one to retain both the
Wavelength (nm) high-coupling strength representative of small-mode volume

cavities while preserving high-quality factors. Clearly this
FIG. 10. Experimental measurement of the intrinsic quality fac-fact, along with other advantages in control and reproducibil-
tor for a toroidal microresonator at a resonance wavelength ofty over spherical cavities, suggests that these structures are
852 nm. The main figure shows the generation of stimulated Ramagromising for CQED experiments.

scattering, illustrated by the secondary peak located at a wavelength | 5ot 4 comparison with photonic band-g@#BG) cavi-

0f 890 nm. The threshold pump power for stimulated Raman scatgo s 5150 provided in the table. Due to the realization of
tering (53 uW) can be used to infer the intrinsic quality factor of

1 . . : ) optical mode volumes near the fundamental limit in a dielec-
X 108 for this cavity. The inset shows the temporal cavity decay ' . ) . .
resulting from a series of ringdown measurements for a diﬁerenp’IC cavity [211’ Comb',ned with recent results demonstra'tlng
toroidal microcavity. The measured photon lifetimeraf22 ns cor- ~ 'easonably high-quality factors-45 000 [33], these cavi-
responds to a loaded quality factor@f =0.48x 108. After correct-  ties are strong candidates for chip-based strong-coupling
ing for fiber-taper loading and the presence of backscattering, a@QED [22]. While these structures can potentially achieve
intrinsic quality factor of 1. 10° is obtained. atom-cavity coupling strengthg= 17 GHz[22], far greater
than those possible in a silica dielectric cavity, their much
lower quality factors result in greater critical atom numbers

has a radiative quality factor of 1:810°). For these values than possible in toroidal microcavities. For example, the
the TM-polarized optical mode would have CQED param-work of Ref.[22] projectsNy=6.4X 10°5. We also note that
eters of(g/(27),ng,Ng)=(450 MHz, 1.7 10°°,4.5x 10°%), the correspondingly lower quality factors also result in mod-
which are far superior to current FP cavities. est ratios of coupling to dissipatigimax(y, , k) (a figure of
merit indicative of the number of Rabi oscillations which
occuh of ~4 [22], much lower than predicted for toroidal
structures(~165). Furthermore, we can consider an addi-
VI. COMPARISON OF MICROTOROIDS tional figure of merit: namely, the “rate of optical informa-
WITH OTHER RESONATORS FOR CAVITY QED tion per atom”[1], given by R=g?/ k. The table indicates

Table | presents a comparison of CQED parameters fothat toroidal cavities compare favorably with PBG cavities in

various cavity types including toroidal, FP, and photonicthis figure of merit as well.
crystal. To date, most experimental work has involved the
use of Fabry-Perot cavities, with current state-of-the-art fab-
rication technology allowing the attainment of coupling
strengths of 110 MHz, with corresponding critical atom
numbers of 6< 1072 [4]. Estimates on the theoretical perfor-
mance limits of FP cavities have also been investigh2éd Our work has demonstrated that toroidal resonators are
predicting coupling rates as large as 770 MHz, with a correpromising cavities for investigation of the coupling of an
sponding critical atom number of>210°*. While this level  atomic system to the electromagnetic field in the regime of
of performance may be theoretically possible, the currenstrong coupling. Not only are these structures arguably sim-
necessity of expensive and sophisticated high-reflection dipler to manufacture and control than other structures such as
electric mirror coatings does not bode well for easy improve-microspheres and FP cavities, but also allow integration on a
ments with respect to current technology. This is one of thesilicon chip, paving the way for the addition of atom traps
reasons silica microspheres are of such high interest. Calc(i34] and waveguides which can enhance the capability and
lation of the limits possible with silica microspherga3] possibly reduce the experimental complexity of CQED stud-
shows that not only is it possible to obtain high values ofies. Furthermore, we note that in addition to the enhanced

VII. CONCLUSION
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TABLE I. Summary of the relevant parameters for cavity QED for a variety of resonator systems. The table shows both the experimental
state of the arf23] and the projected limits for a Fabry-Perot cai0], plus current experimental results with silica microsphé¢es.
Furthermore, a theoretical comparison between silica microspf@3ggphotonic band-gap caviti¢22], and toroidal microresonatofthis
work) is also given. The results indicate that toroidal cavities can uniformly exceed the performance on these parameters for both FP cavities
and silica microspheres. Comparison with PBG cavities indicates that toroids possess much lower atom-cavity coupling asrangihist
of their much larger mode volumgsut still result in greatly improved critical atom numbers due to their very large quality factors.

Critical photon  Critical atom Coupling to Rate of
Coupling coefficient number number dissipation ratio  optical information
Resonator system g/(2m) (MHz) Ny No g/maxy, ,k) R= g%/ k (Mbits/seq
Fabry-Perot 110 2.8x10* 6.1x10°3 7.8 5.4x 10°
experimental state of the art
Fabry-Perot projected limits 770 5<710°° 1.9x 10 36 1.7x10P
Microsphere experimental 24 5.5x10°° 3.0x107? 7.2 1.1 10°
(D=120 um)
Microsphere theory
Maximumg (D=7.25 um) 750 6.1x10°° 7.3x1071 0.01 4.5< 10
Minimum Ny (D=18 um) 280 4.3<10°° 3.1x10°6 107 1.1x 10
Photonic band-gap cavity 17000 Ka0™® 6.4x107° 3.9 5.1 1P
Toroidal microcavity theory
Maximum g >700 6.0x10°® 2.0x10™* 40 1.6x10°
Minimum N, 430 2.0<10°° 2.0x107 165 1.6x 1C°

performance benefit of having a toroidal geometry, the capa- As a further note, the use of higher-index contrast dielec-
bility to retain a relatively large resonator diameter overtric material can allow additional improvements in the per-
other structures results in a smaller free-spectral ranggérmance of these structures. The use of silica as the dielec-
(FSR. This allows not only easier tuning of the cavity reso- tric of choice in both the spherical geometry and in the
nance location to correspond precisely to the atomic transitoroidal microcavities studied in this work was convenient,
tion wavelength, but also may allow integration of a supple-as these structures not only possess record high-quality fac-
mental far-off-resonance trap by exciting the cavity at aiors put are currently producible. However, as the radiative
m.uItipIe of the free-spectral range. The realizatipn ofa cavityqua”ty factor of a whispering-gallery-type cavity is strongly
with a smaller FSR may allow a closer maiching of a SeCygpendent on the refractive index difference between the
ondary resonance quatlon FO_ the pump Wavelength Wh,'cgtructure and external environment, much smaller modal vol-
corresp_onds to state-insensitive trapping of atomic CesiUNy o are possible for a given quality factor with the use of a
7], which can simplify the atom-cavity dynamics. The usehigher—index resonator material. In fact, this is one of the

of a silica dielectric whispering-gallery cavity also allows " . l .
operation over a broad range of wavelengths, with very—high:reasons PBG cavities fabricated from silicon or other high-

quality factors possible for nearly all resonances. This is ir{ndeT d|electr|gs car; ﬁbtalndultralsmall mOd.EI vglume.?. A
strong contrast to the mirror reflectivity limits of coated Fp S'MP'€ comparison o the mode volume possibie in a silicon

cavities. toroid shows that a mode volume on the order of only about
The ability to connect distant quantum nodes with highlO times larger than PBG cavities is possible, with much
efficiency, preferably over optical fiber, is very desirable forhigher-quality factors. While this work has focused on silica
quantum networks. Using FP cavities, optical fiber couplingMicrocavities, the reflow process is a relatively flexible
is possible; however, the overall coupling efficiency is mod-method, thus suggesting that it may be possible to also create
est (~70%). Fiber-taper-coupled microtoroids allow cou- high-index ultrahighQ quality factor cavities which come
pling efficiencies in excess of 99947], above both FP and closer to the large coupling strengths of PBG cavities while
PBG cavities(97%) [35]. This capability to obtain near- further improving the critical atom number.
complete input and output coupling efficiencies strongly sug- Last, the current experimental ability to obtain large cou-
gests the use of fiber-coupled silica whispering-gallery cavipling strengths with quality factors exceeding® 1€ promis-
ties, such as microtoroids, as building blocks to enable highing for the immediate use of these structures in strong-
performance quantum networks. coupling studies. We are currently pressing forward
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We report an investigation to establish the physical mechanisms responsible for decoherence in
the generation of photon pairs from atomic ensembles, via the protocol of Duan et. al. for long
distance quantum communication [Nature (London) 414, 413 (2001)] and present the experimental
techniques necessary to properly control the process. We develop a theory to model in detail the
decoherence process in experiments with magneto-optical traps. The inhomogeneous broadening of
the ground state by the trap magnetic field is identified as the principal mechanism for decoherence.
The theory includes the Zeeman structure of the atomic hyperfine levels used in the experiment, and
the polarization of both excitation fields and detected photons. In conjunction with our theoretical
analysis, we report a series of measurements to characterize and control the coherence time in our
experimental setup. We use copropagating stimulated Raman spectroscopy to access directly the
ground state energy distribution of the ensemble. These spectroscopic measurements allow us to
switch off the trap magnetic field in a controlled way, optimizing the repetition rate for single-photon
measurements. With the magnetic field off, we then measure nonclassical correlations for pairs of
photons generated by the ensemble as a function of the storage time of the single collective atomic
excitation. We report coherence times longer than 10 us, corresponding to an increase of two orders
of magnitude compared to previous results in cold ensembles. The coherence time is now two orders
of magnitude longer than the duration of the excitation pulses. The comparison between these
experimental results and the theory shows good agreement. Finally, we employ our theory to devise

ways to improve the experiment by optical pumping to specific initial states.

I. INTRODUCTION

Quantum memory is a key resource for many quantum-
information protocols. Usually it is associated with the
basic requirements for quantum computation [1, 2], but
in recent years also quantum communication protocols
started to rely on it. The requirement of memory was in-
troduced in quantum communication as part of the idea
for quantum repeaters [3, 4], a possible solution for the
problem of quantum communication over long distances.
In this case, memory is essential to increase the prob-
ability of success of the chain of conditional steps that
underlies the protocol, and makes feasible scalable quan-
tum networks.

A significant step toward the realization of the quan-
tum repeater idea was a proposal by Duan, Lukin, Cirac,
and Zoller (DLCZ) for its implementation using linear
optics and atomic ensembles [5]. The DLCZ protocol is
based on the generation of single photons by spontaneous
Raman scattering in atomic ensembles [6]. The detection
of a single photon in the forward propagating mode her-
alds the presence of a single collective atomic excitation
in the sample, due to a collective enhancement effect.
This excitation can be stored for a time up to the co-
herence time of the ground states of the atoms and then
converted back into a light field. Entanglement of distant
ensembles in the excitation number basis is generated by
interference [7], and extended to longer distances by en-
tanglement swapping [8, 9]. The final pairs of ensembles,
far apart, can then be used for entanglement-based quan-
tum cryptography [5, 10], probabilistic quantum telepor-
tation and violation of Bell inequality. This proposal has
received much attention in the past two years and several

groups are presently pursuing its experimental implemen-
tation [11, 12, 13, 14, 15, 16, 17, 18].

In this article, we analyze the decoherence processes
present in the DLCZ protocol, and describe experiments
to mitigate the problem. We construct a theory for the
decoherence process in the photon-pair generation. Par-
ticularly, our analysis concentrates in its implementation
with cold atomic ensembles, but many results should
also apply to studies with room-temperature ensembles
in vapor cells. We propose various strategies to increase
the system’s coherence time, and introduce experimental
techniques necessary for its characterization and control.
We also report the first experimental steps in this direc-
tion, with an increase of more than two order of magni-
tude in the coherence time with respect to the previously
reported works with cold atoms [11, 14, 16, 17, 18].

The coherence times reported up to now by the sev-
eral groups working on the implementation of the pro-
tocol are all shorter or of the order of a couple of mi-
croseconds. Furthermore, for all experiments to date,
the reported coherence times are of the order of the ex-
citation pulses duration. However, for using this system
as a quantum memory, it is important to obtain storage
time much longer than the excitation pulses. Moreover,
for the DLCZ protocol to become a viable alternative for
long distance quantum communication, long coherence
time is crucial and major efforts are required to increase
it. The main goal of the present article is then to provide
the initial steps in this direction, and to establish several
techniques and ideas for the next steps.

Only two types of systems have been employed in the
experiments up to now: vapor cells [12, 13, 15] and
cold atoms in magneto-optical traps [11, 14, 16, 17, 18].
In both systems, however, the experiments have not



achieved yet their respective state-of-the-art coherence
times. The vapor-cell studies, for example, did not em-
ploy paraffin coated cells [19, 20]; the coherence times
were effectively limited to the time the atoms take to dif-
fuse out of the excitation region, which is of the order
of microseconds. Recently, high fidelity atomic quantum
memory of the state of a light pulse was achieved with
such paraffin coated cells [21] with memory times of up to
4 ms. Coherence times of tens of milliseconds, however,
are commonly achieved in this system [22], and there are
reports of coherence times as high as one second [19].
The difference in these values is largely due to measure-
ments of decay of different coherent processes [19]. How
the coherence required for the generation of photon pairs
from atomic vapors will decay as the atoms collide with
the walls of paraffin coated cells is still to be determined.

The use of atomic traps to generate photon pairs for
the DLCZ protocol has the advantage of providing a high
density of atoms distributed in a small spectral region,
due to the suppression of Doppler broadening by the cool-
ing process. This allows the use of excitation laser pulses
tuned closer to resonance, which requires much less power
and makes it easier to filter the excitation pulses from the
Ramam-scattered photons. However, atomic traps also
introduce a different set of complications. In the case
of the magneto-optical traps (MOT) used up to now,
the magnetic field of the trap induces decoherence on
a timescale of the order or smaller than a few hundreds
nanoseconds [16, 17, 18]. The first results with the MOT
magnetic field off are reported in the present article, with
coherence times on the order of 10 us. As will be dis-
cussed below in detail, a better nulling of the magnetic
field combined with optical pumping to specific Zeeman
levels might increase the coherence time, in a straightfor-
ward way, to hundreds of microseconds.

Further improvements with MOTs would face the
problem of diffusion of atoms from the excitation region
and, most troublesome, from the MOT itself. This prob-
lem can in principle be mitigated by improved cooling
techniques. However, along these lines, it would be dif-
ficult to increase the coherence time above a couple of
milliseconds. A possible solution then is to use an op-
tical dipole trap to hold the atoms during the write-
and-read process. Hyperfine coherence times of hun-
dreds of milliseconds have already been observed in such
traps [23, 24].

In the following, Secs. II and IV are devoted to theo-
retical results and Sec. III to associated experiments. In
Sec. ITA we give a general introduction to the photon-
pair generation process behind the DLCZ protocol. In
Sec. IIB, we derive a theory for the probability of
joint detection of these photons pairs generated from an
atomic ensemble in a magneto-optical trap. This theory
is a direct extension of a previous theoretical treatment
reported in Ref. 6, to which we added explicitly the read-
ing process and the Zeeman structure of the levels. In
this way, we are able to model the action of the magnetic
field over the atoms, and to study the dependence of the

correlations with the light polarization.

Section IIT describes an experimental investigation
leading to the nulling of the magnetic field in the photon-
pair correlation measurements, with the subsequent in-
crease in the system coherence time and degree of cor-
relation. In Sec. III A, we describe a series of Raman-
spectroscopy experiments to characterize the system and
optimize the process of zeroing the magnetic field. We de-
termine the set of experimental conditions that result in
a good compromise between atomic density and magnetic
field cancellation, which we used in the correlation mea-
surements. Section IITB describes then measurements of
nonclassical correlations for the photon pairs generated
by the MOT. We compare results with magnetic field on
and with magnetic field off. The magnetic field off mea-
surements present a higher degree of correlation, and a
hundred times larger coherence time. We compare the
shape of the experimental curves with magnetic field on
and off to our theory, obtaining good agreement. We also
show how the two-photon wavepacket that describes the
detailed temporal structure of the photon pair generation
is modified by the magnetic field.

Finally, based on the procedure for comparison be-
tween theory and experiment described in Sec. III B, we
formulate in Sec. IV a proposal to improve our experi-
mental signal. We suggest using a combination of optical
pumping to a specific initial state and polarization of the
light fields to increase both our detection efficiency and
coherence time. Section V is dedicated to our conclu-
sions.

II. THEORY

The basic theory for the DLCZ protocol is described
in Refs. [5] and [6]. The general idea of the protocol is
treated in Ref. [5], while Ref. [6] gives a detailed analysis
of the collective emission of photons through spontaneous
Raman scattering following excitation by free-space light.
Section II B provides an extension of the theoretical treat-
ment of Ref. [6] to better account for our experimental
conditions. The emphasis here is the modeling of the de-
coherence process due to external magnetic fields, and in
particular for experiments using magneto-optical traps.
To model this decoherence, the essential elements to be
introduced in the previous theory of Ref. [6] are the Zee-
man structure of all levels and an explicit treatment of
the reading process. On the other hand, the theory in
Sec. II B is a simplification of the treatment of Ref. [6]
concerning the spatial mode of the photons. We consider
only the forward, collectively enhanced emission. The
reading process is also treated in a simplified, perturba-
tive way, while the experiments are done with stronger
read pulses on resonance. This later difference between
theory and experiment will result in some noticeable dis-
crepancy in Sec. III B 2, where we discuss measurements
of the two-photon wavepacket of the pair-generation pro-
cess. In general, however, the comparison between the-



ory and experiment performed in Sec. III B results in
very good agreement, which indicates that the theory
in Sec. II B takes into account the essential physical ele-
ments behind the decoherence process.

A. Photon pair generation

The building block of the DLCZ protocol is an ensem-
ble of N identical atoms with lambda-type energy level
configuration as shown in Fig. 1, which we briefly discuss
here in an ideal setting. In the experiments discussed
in this article, the lower states |g) and |s) are hyperfine
sublevels of the electronic ground state of Cesium atoms.
First, all atoms are prepared in the state |g). By sending
in a weak, off-resonant laser pulse, one atom of the en-
semble might be transfered from |g) to |s), thus emitting
a photon (field 1) at a frequency or polarization differ-
ent from the original exciting field. A key element of
the protocol is the collective enhancement of this spon-
taneous Raman scattering in a forward direction, which
is determined by the spatial mode of the laser pulse and
the geometry of the excitation region [6]. If the laser
intensity is low enough so that two excitations are very
unlikely, the detection of the photon generated in this
process is a signature that the ensemble was excited to
a symmetrical collective state [5, 6], which in the ideal
case can be explicitly written as

N
1) = %N; 915 lg) s (1)

where the sum goes over all atoms addressed by the laser
pulse, and |1,) indicates the state of the atomic ensemble
with just one excitation. This is the “writing” step of the
protocol (Fig. 1a).

Since the excitation probability x is very small, the
whole state of the system consisting of atoms and
forward-scattered mode of light is in the following form:

|6) = 100)[01) + ¢ X [1a)[11) + O(x), (2)

where x << 1, |n1) stands for the state of the forward-
propagating light field 1 with n photons, § is a phase
set by propagation to and from the ensemble, and |0,) =

®fv“ |g)i- O(x) represents all the other possible excita-
tion processes, which in the ideal case occur with proba-
bilities of order 2. The system remains in this state for
a time on the order of the lifetime of the ground states.
By sending in a second (“read”) pulse resonant with the
|s) — |b) transition, the state of the atomic ensemble
can be transferred deterministically (read out) to another
forward-propagating light field 2 at the |b) — |g) tran-
sition (see Fig. 1b). In this way, it is possible to access
the quantum state of the atoms. This reading process
is then closely related to low-light-level Electromagneti-
cally Induced Transparency [25, 26]. After the read out,

a) b)
|b)
:.?'.s_;field 1
| 3 200900
|9 — 19 —_—
s> |s

FIG. 1: Relevant level structure of the atoms in the ensemble
for (a) writing and (b) reading processes, with |g) the initial
ground state and |s) the ground state for storing an excita-
tion. |a) and |b) are excited states. The transition |g) — |a)
is initially coupled by a classical laser pulse (write beam) de-
tuned from resonance, and the forward-scattered Stokes light
(field 1) comes from the transition |a) — |s), which has dif-
ferent polarization or frequency to the write light. A classical
read pulse then couples the transition |s) — |b), leading to the
emission of forward-scattered anti-Stokes light (field 2) from
the transition |[b) — |g).

the state of the system becomes:

[6) = [01)[02) + e /X [11)[12) + O(x), 3)

where ~y is a phase that includes 8 and the propagation
phases to and from the ensemble related to the reading
process. Fields 1 and 2 exhibit now strong correlations in
the photon number basis, and can be described as photon
pairs. These non-classical correlations can be measured
by photoelectric detection. Since the field 2 maps the
state of the atoms, the correlations between field 1 and
field 2 can then be used to infer correlations between field
1 and the collective atomic excitations in the sample.

B. Decoherence

In order to analyze the decoherence process in the gen-
eration of pairs from an atomic ensemble as described in
Sec. ITA, we need to expand the theoretical treatment
of Ref. [6] to include other experimentally relevant fea-
tures. For our experiments in particular, it is essential
to include the splitting of the Zeeman structure of the
atomic ground states due to the magnetic field. The
MOT quadrupole field generates an inhomogeneous dis-
tribution of splittings throughout the ensemble. As the
system evolves in time, this results in dephasing between
different regions of the atomic cloud, and in a respective
decay of the coherence of the collective state. It is also
important to include explicitly the reading process in the
theory. For simplicity, this is done by considering a read
process similar to the write process, i.e., with small prob-
ability of excitation and detuned from the excited state.
Note that in the actual experiment, the read beam is
stronger than the write beam and is on resonance. This



will lead to small discrepancies when comparing the ex-
perimental results to the theory, that will be discussed in
section III B 2.

The inclusion of Zeeman structure in the theory al-
lows a detailed discussion of the effect of light polariza-
tion in the experiment. This is important to evaluate
different excitation and detection schemes. It also gives
a better description of the initial state, and of its role
on the subsequent coherent pair generation. Together,
the analysis of different polarization schemes and of dif-
ferent initial states led to specific proposals of ways to
improve the whole process. These features of the theory
are not specifically related to the MOT magnetic field,
and should apply to pair generation in other systems,
like vapor cells or dipole traps.

Our treatment starts by considering a sample of NV
four-level atoms, such as in Fig. 2. The four levels rep-
resent manifolds of Zeeman sublevels and are indicated
by their respective F' quantum numbers. A specific state
of the F; manifold of the ¢-th atom is represented by its
ket |m;);, where m; is the azimuthal quantum number.
Two pumping fields act on the system, namely a write
field fga and a read field 551,, where

Ega(Tit) = (7, t)eikuz—wutly (4a)

Ea(Frt) = up(F t)etbrz—wrde (4b)

r )

which couple the transitions F; — F, and Fy, — Fp,
respectively. The functions u,, and w, give the slowly-
varying envelopes of the write and read pulses, respec-
tively, and €, and €}, are their polarization vectors. As
a result of their action, two Raman fields are sponta-
neously generated in the sample:

where wp; = |ks|c and p; is a label for the field polariza-

tion. ag and l;& , are the annihilation operators for
the Raman fields 1 and 2, respectively, which couple the
transitions Fy — F, and Fy; — Fj. The state of field 1
with just one photon excited in mode Elpl will be desig-
121ated by |1, ,,)- A similar notation will be used for field

The Hamiltonian for the system of N atoms can be
written as

H(t) = Ho+ V' (2), (6)
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FIG. 2: Energy level scheme considered for the atomic ensem-
bles
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is the free-atom Hamiltonian, and

N N Fa Fy - -
V(t) = Z{ Z Z (_dmamg gqa) [ma)i(my|
=1 Mme=—Fg mg=—Fy
F Fa N
+ Z Z (_Jmsma ng) [ms)i(mal
ms=—Fsmqe=—F,
F, F,

+ > % (—ngmb

mg=—Fgmy=—F}

E1) |mg>i<mb|} (®)

gives the time-dependent interaction Hamiltonian. d;»k
is the dipole moment for the j — k transition, pup the
Bohr magneton, g; the hyperfine Landé factor for level
F;, and B, is the magnetic field in the position of the
i-th atom. The magnetic field direction is taken as the
quantization z axis. We neglect the Zeeman splitting of
the excited states since we want to investigate a situation
where it is always smaller than the excited-states natural



linewidths. The factors —cfjk -5kj can also be written as

_Cfmamg ) ﬂqa — Kmamguw(rut)ei(szlv—wwt) 7 (9a)
_ ' . -i- o klpl AT 71‘(}21"7‘7&)% t)
Ao, 5 Z / dk KFP o Fini© v
(9b)
—mems : gsb = Kmbmsur(Fiv t)ei(kTZi_WTt) ) (9(3)
> 2t Baps 3t ik F—wp 1)
_dmgmb ’ ggb - Z/dk K7n2rp731bbk2p2e =
(9d)

where Ky, m,, K,’;ls%a Konym,, and Kﬁffﬁlb are coupling
constants for the corresponding transition.

The temporal evolution of the coupled system consist-
ing of ensemble + Raman fields is described by the evolu-
tion of its density matrix 5(¢). In the interaction picture,

the corresponding operator p(t) is given by

pr(t) = U1 (A0} (1), (10)

where U; (t) is the temporal evolution operator, and the
initial state 5(0) can be written as

p(0) = pr, (0)®pr,(0)@p1(0)@p2(0)@- - -@pN(0), (11)

with pp (0) the initial state of field 1, pr,(0) the initial
state of field 2, and p;(0) the initial state of the i-th atom.
For most of what follows, we will be interested in the
case where the fields 1 and 2 are initially vacuum states,
ﬁFl (0) = |UGCF1><UGCF1| and ﬁFz(O) = |’UCLCF2><’U(LCF2|,
and all atoms are initially in the same incoherent dis-
tribution over the Zeeman sublevels of the F| state:

Fy

pi0) = >

mg=—F,

Din, [mg)i{megl, (12)

with D, giving the probability of finding an atom in the
mg state at ¢ = 0. In section IV however, we will consider
the case where all the atoms are optically pumped in one
of the Zeeman sublevel (mp = 0).

The operator U(t) can be written as a Dyson series in
the form

N N
H=1+3 U0 +3 U0+ (13)

where
UM = (—%) /O L.
u?w) = (—%)z/ot dt’ /Ot, dt"V;(tYVi(t"), (14)

and so on. The single-atom interaction operator V;(t) is
defined from the expression for the general interaction

Hamiltonian V;(t) in the interaction picture as

‘A/](t) — ZH()t/ﬁV —lH()t/h

Zv (15)

1. Probability for joint detections

We want to calculate in the lowest order of perturba-
tion the probability of detecting a single photon in field
1 followed by another photon in field 2. The first step is
then to calculate the restriction of the coupled state p(t)
to the space of states of fields 1 and 2:

prir () =Tra[p(t)] - (16)

The symbol TT 4 indicates a partial trace over all atomic
states. The probability for detectmg two photons, one in
mode k1p1 and the other in mode kgpg, up to time t is
then given by

P, kupy, kaps) = (1 [, e (817,017,
- <1E1;D1|< k2102|TrA[ ( )H 2;02>| k1P1>'
(17)

Since all atoms are initially in the ground state F}, the
lowest order term of series (13) that results in a single
photon in field 1 and another photon in field 2 is the
fifth term, which accounts for the four transitions carried
successively by the write field, photon 1, read field, and
photon 2, respectively. Substituting Eqgs. (10) and (13)
into Eq. (17) and keeping only the lowest order term, we
arrive then at

pih(t, Fip1, E2P2) =
N
N 4
> (U M1, I TEAlE D @O 1) |117,, )17,
i,j=1

(18)

Note that L?,g4) acts only over the k-th atom. Thus, the
trace Tt 4 on each term of the double sum can be written
as a trace 1Ty over the states of the atoms at which
the L?,£4) operator is acting, since all other atoms remain
in their initial state. Two different cases are present in
Eq. (18). If i # j, the two operators act over two different
atoms and the initial state p(0) simplifies to pr, (0) ®
pr,(0) ® p;(0). With these observations in mind, we see



that Eq. (18) can then be written as

Pib(t, kipr, kapa) =
N

> (U, g v [0 (95:0)] fvac,) fvacr)
i,j=1
1#]

X (vacp, |(vacg,|'Tr; [ (0 )Z] 4”( )] |1E2p2>|1l€1p1>

N

+ Z<1Q1P1|< k2P2|Trl |:

=1
< U] 115,115,

()pr, (0) ® pr, (0) © pi(0)

(19)

Substituting Eq. (12), we have

N Fy

Z Z DimgAi(mg,myg)

i=1 my=—F,

PiB(t, k1p1, kapa) =

N Fy Fy

Y Y D DuglAi(my,my)?
1=1 m;:—Fg mg=—F,
N | F 2

_Z Z DimgAi(mg, mg)| (20)
i=1 |mg=—F,

where

A; (mg,mg) =

(4
(L [ (1 | G 2D (D)l )ifvace, ) Joacr, ). (21)
Note that the first term on the right side of Eq. (20)
scales as N2, while the two remaining terms scale with
N only. Since we are interested in the limit of large NNV,
we can then approximate

Ai(mg, myg)

N Fy
Pl (t, kipr, kapa) = ) Z
=1 my—

(22)

Thus, for large IV, only transitions that start and end in
the same state contribute to the pair generation. This
result can be understood as a constructive interference
between all pathways that connect the ensemble back to
its initial state, after which it is not possible to distin-
guish which atom made the transition [27]. Pathways
connecting different initial and final states leave a trace
in the ensemble, which in principle can give information
on which specific atom made the transition. In this last
case, the number of possible pathways generating the pair
of photons is then linearly proportional to the number of
atoms N. Eq (22) expresses the collective enhancement
that is essential to the scheme of ref. [5].
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Finally, substituting the specific expressions for 7;11(4) (t)
and V;(t), we find that A;(mg, my) can be written as

Fy d . .
Ai(mg,mg) — Z (m;]LZlmS) ei(k,,‘ziﬁ*szi*kl~’F"ifk2~’?7;)

mS:—F

dt/ez(Awk2 Artaig)t’

/dt”ur 7;»“ // z(A —a;s)t”

dtm i( Aw —Aytais)t’”
///
. . v
x / At 1y (7, £ ) Bt (23)
0
where A, = w, — Wy, Ar = wp + wWs — Wi, AWEI =
Wi — Wy — Ws, AwE2 =wp —wr +ws, and

Fy
d(mg’ms) = Z Z Kr]?fpﬁmbK:nbm KflfmlpﬁmaK;Umamg
mp=—Fp, mq=—Fq

(24)
gives the strength of an specific excitation pathway in
which the atom starts at mg, then goes to ms, and
ends at m, again. The Zeeman splittings are written
in terms of the parameters a;, = ppgymgyB,,/h and

Qijs = ,UBgsmsBzi/h-

2. Forward emission

In order to simplify the following analysis while keep-
ing the essential trends of the temporal dynamics, we
will focus now on the treatment of the forward, reso-
nant emission from the atomic ensemble. In the forward
direction, the light emitted by the sample satisfies the
phase-matching condition

kr2i + kw2 — ki -7 — ko - 7 = 0. (25)
The resonant conditions for the Raman fields are AwEI =
0 and Aw,;z = 0. A discussion about deviations from
these conditions can be found at Ref. [6].

Under these assumptions, and with the slow envelope
functions written as

ur (7, t) = ¢r(7) fr(2) , (26a)
(7, 1) = qu (73) fu(t) (26b)
Equation (23) becomes
. . s d(mg, ms)
Ai(mg,mg) = @r(T3)qu (77) Z e F(t, z),
ms=—Fs
(27)



with

t ¢
F(t, 2i) = / dt! (A rFa)t / At f (1) (Br—ai)t”
0 0

1
t

t”
></ dt///ei(waJrais)t”’/ dt/ljfw(t/l/)ei(Awfaig)t,u.
0 0
(28)

Note that the F' function depends on the parameters for
a specific atom only through z; that specifies its position
along the quantization axis. In this way, after a certain
time, atoms in different parts of the ensemble contribute
to the probability amplitude of the process with different
phases.

If we consider a uniform distribution of atoms through-
out the beam path, and neglecting the z dependence on
the ¢ functions, the sum over all atoms may be trans-
formed in the following integral

équqw(m% [ [awavazate e -

://dxdy qr(x,y)jw(x,y)%/dz

L/2 g4,
=@y N[ G
(29)

where V' = AL gives the volume of the excitation region,
A its transverse area, and L its length.

Substituting Eqgs. (27) and (29) in Eq. (22), we finally
obtain

Fy Fy L/2 4,
o =c| S Y Dudmgm) [ FF)
mg=—Fy ms=—F, —L/2
(30)
where
C = N*[(gr (2, 9)qu (2, 9))|”, (31)

is a constant. After the read pulse has left the sample
(i.e., when t — o00), Expression (30) is then proportional
to the total probability of detecting the pair of photons
in one trial. Details on how to compare this expression to
the experimental results will be discussed in Sec. ITI B 1.
In the experimentally important case of square pulses,
it is straightforward to obtain analytical expressions for
both F(t, z) and p12(t) in the limit of large A,, and A,.

3. Probability density

Equation (30) gives the total probability of detecting
one photon in field 2 after detecting a photon in field 1.
Now we want to obtain the probability of finding photon
2 between times to and ¢ + Aty and photon 1 between
times ¢ and t; + Atq, for small Aty and Aty.

The first step in this calculation is to note that Eq. (30)
can be written as,

pis(t) = lo(t)]*. (32)

The function ¢(t) gives then a probability amplitude for
the process where the two photons are found up to time .
It consists of an integral over all possible pairs of detec-
tion times (t2,t1), representing different excitation path-
ways, and can in principle also be written as

b(1) = /O ity /t dtsP(ta. 1), (33)

where we considered explicitly to > t1. P(t2,11) repre-
sents then a density of probability amplitude.

The probability amplitude for finding photon 2 be-
tween times to and t2 + Ats, and photon 1 between times
t; and t; + Aty, can be obtained then by restriction over
the temporal integral in Eq. (30). Since all the tempo-
ral dynamics in Eq. (30) is in the function F'(t,z), we
need to calculate first the restriction of F(t,z) for these
specific processes. In order to do so, note that, in the
fourth order integral of F'(¢, z), the emission of photon 2
is described by the last integral (over t'), while photon 1
emission is described by the third integral (over t"’). The
restriction of F'(¢, z) for the emission of photon 2 between
times to and to + Ats, and photon 1 between times ¢ and
t1 + Aty, is then given by [28]

to+Ats

G(tQ, AtQ, t17 Atl) = / dt/ei(iA'r‘J"aig)t/

ta

t t1+At
« / dt”fr (t//)ei(Ar*ais)t" / dt///ei(waJrais)t”’
0 t

1
t///
v

X/ dtIUfw(t/v)ei(Awfaig)t ] (34)
0

Equation (34) can be directly evaluated for the case of
square pulses and large detunings, such that A, A, >>
Aty Aty If the time intervals are also small when
compared to the timescale of oscillations determined by

the Zeeman shifts (i.e., Aty, Aty << ay',a;"'), then
Eq. (34) can be written as
G(to, Ato, t1, At1) = g(ta, t1)At; Aty , (35)
with
ota, ) = —LrEDI() ity —aamn) (36

AA,

In this case, F'(t, z) can be derived by:

F(t,Z) = /Ot dtl /tlt dtQ g(tz,tl) . (37)

An important remark is that, since any pulse envelope
can be approximated by a sum of square pulses of differ-
ent intensities and small duration, Eq. (36) is indeed valid



for arbitrary pulse shapes, as long as the envelope tem-
poral variation occurs in a much longer timescale than
Atl or Atz.

The connection between g(ts,t1) and the density of
probability amplitude P(t2, ;1) is then made through the
relation

Fg Fg
P(ta,t1) =VC Z Z D d(mg, ms)
Fs

mg=—Fg ms=—
L/z g,

x / LI (38)
—L/2

Finally, the probability density for detecting one photon
from field 1 at time ¢; and another from field 2 at ¢y is
associated to

P(ta, t1) = |P(ta, t1)|% (39)

This is the quantity to be compared with the experimen-
tal results of Sec. ITI B 2, for the two-photon wavepacket
of the photon pair.

III. EXPERIMENTS

Up to now, the experimental implementation of the
DLCZ protocol in MOTs have been plagued by extremely
short coherence times [11, 14, 16, 17]. As discussed
above, this short coherence time is a result of the action
of the MOT quadrupole field over the Zeeman structure
of the hyperfine ground states. In the following, we are
going to describe a series of experiments that allowed us
to obtain photon pairs from the trapped atomic cloud
in a situation of very small magnetic field. In this way,
we were able to measure coherence times of more than
10 ps (more than two orders of magnitude longer than
the duration of the excitation pulses), and two-photon
wavepackets for the photon pairs that do not exhibit dis-
tortion by decoherence even when write and read pulses
cease overlapping in time [17].

The crucial point is to turn off the MOT magnetic
field and determine the experimental conditions with a
best tradeoff between high repetition rate and high op-
tical density. Note that the atoms fly away from the
trap and the density starts to decrease when the mag-
netic field is turned off. Hence, the MOT field has to
be turned off as fast as possible, to decrease the tran-
sient time and maximize the region with low magnetic
field and high density. A fast turning off of the magnetic
field in our metallic vacuum chambers, however, is not
straightforward and requires specific techniques, as will
be discussed in Sec. IITA.

Inside each MOT-off period, it is possible to conduct
many trials of the photon pair experiments. These are
photon counting measurements that require many events
in order to acquire good statistics. Hence, we would like
to have as many MOT-off periods as possible to accumu-
late a large number of trials. However, the MOT needs

some time to recover its original density after each off
period, and this time limits how often it can be turned
off while still keeping a high enough atomic density.

During the process of turning off the magnetic field and
determining the proper conditions for the photon count-
ing experiments, it was essential to be able to perform
simpler experiments giving direct access to the ground
state broadening by the magnetic field. We chose then
to setup a copropagating stimulated Raman spectroscopy
apparatus to help us in this process. The results for the
Raman spectroscopy measurements and the investigation
to determine the best experimental conditions for the
photon pair generation are described also in Sec. IIT A.

The nonclassical correlation experiments are discussed
in Sec. IITB. There we show that the coherence time in-
creases by more than two orders of magnitude once the
magnetic field is switched off, and describe measurements
of the shape of the two-photon wavepacket in both situa-
tions. In this section, we also compare the experimental
results with the theory of Sec. II B.

A. Characterization and magnetic field nulling

As anticipated above, we use copropagating stimulated
Raman spectroscopy [29] to probe directly the broaden-
ing of the hyperfine ground states. Our choice for this
specific technique is based on the fact that it is insensitive
to Doppler broadening, but very sensitive to any broad-
ening caused by magnetic fields, exactly like the spon-
taneous Raman emission process underlying the photon
pair generation in our experiment. Raman stimulated
transitions (see Fig. 3a) are two-photon transitions con-
necting one ground-state hyperfine level to the other one,
in which a single photon is absorbed from one Raman
beam and another photon is emitted in the other beam
by stimulated emission through a virtual level, which is
located 3 GHz below the Cesium D5 line in our setup.

The Raman process is resonant if the frequency differ-
ence of the two Raman beams equals the ground-state hy-
perfine interval, around 9.192631770 GHz for Cesium. In
the absence of collisions and transit broadening, this two-
photon resonance is very sharp, with a linewidth limited
only by the power and duration of the Raman beams [29].
In this way, since the specific value of the hyperfine inter-
val for transitions between |mg,) and |ms) states changes
with the magnetic field, scanning the frequency of one
Raman beam with respect to the other gives direct in-
formation on the frequency distribution of possible two-
photon resonances dislocated by the magnetic field, i.e.,
on the broadening of the ground state.

Our setup for Raman spectroscopy is shown in Fig. 3a.
The two Raman beams and a probe beam are coupled
to the same polarization maintaining fiber, which takes
the beams close to the MOT and provides good mode-
matching between them. The probe beam is coupled with
the same polarization as the Raman field connecting the
F' = 3 ground state to the virtual level, the other Raman



field is coupled with the orthogonal polarization. The
lens at the fiber output focus the beam to a diameter of
150 pm in the MOT region. After the fiber, the beams
pass through a 50/50 beam splitter cube. The transmit-
ted parts of the beams are used as a reference to compen-
sate for power fluctuations. The reflected part is directed
to the MOT, forming an angle of about 6 ~ 3° with the
quadrupole-field z axis. The shaded area around the z
axis in Fig. 3a indicates the path of one of our trapping
beams. The absorption of the probe beam by the atoms
in the MOT is then measured with a second detector, by
comparing the probe pulse height with MOT on and off.

reference
probe

(@)

detector
detector

PM fiher

FIG. 3: (a) Experimental Raman spectroscopy setup. The
Raman beams and the probe beam are coupled into a po-
larization maintaining (PM) fiber and sent trough a beam
spitter cube (BS). The reflected part is focused into the sam-
ple with an angle of 3 degrees with respect to the quadrupole
field z axis, while the transmitted part is used as a reference.
(b) Relevant level structures and laser frequencies for Raman
spectroscopy.

Before the Raman pulses reach the MOT, an optical
pumping cycle moves the whole atomic population to just
one of the hyperfine ground states. Note that for the
following experiments, we make no attempt to optically
pump the atoms onto a specific Zeeman state. Hence,
the atomic ensemble is unpolarized and all Zeeman sub-
states are populated. The action of the Raman pulses, of
about 150 ps duration and 10 pW power, then transfers
some population to the initially empty level if their rela-
tive detuning matches one of the two-photon transitions
of the sample. The probe pulse has a duration of 5 us
and comes 50 us after the Raman pulses. It is resonant
with the cycling transition connecting the initially empty
ground state to the 6P; /5 level [F' = 4 — F' =5 if the
empty ground state is F' = 4, ' = 3 — F’ = 2 for empty
F = 3 state]. The probe power is about 50 nW, to guar-
antee a low saturation of the transition. It is then very
sensitive to any change in the initial population, and its

absorption indicates that the Raman pulses succeeded in
transferring some population from one ground state to
the other.

In this way, a plot of the medium optical depth for the
probe pulse as a function of the detuning between the
two Raman fields gives a direct measure of the ensemble
distribution of energies in the ground states. Examples
of such plots with the MOT magnetic field on and off
are shown in Figs. 4a and 4b, respectively. In Fig. 4b
the Raman pulses are delayed 4 ms from the moment the
magnetic field was turned off, and the nulling of the field
was performed using additional bias coils located around
the MOT and looking for a reduced width of the Ra-
man trace. From Fig. 4a to 4b, the width of the signal
is then reduced by more than two orders of magnitude,
from 5 MHz to about 20 kHz. The 20 kHz linewidth of
Fig. 4b, however, also includes about 10 kHz that comes
from power broadening by the Raman beams. To mea-
sure this power broadening, we applied an extra DC field
in the z direction in order to split the central peak be-
tween the various mp — m/, transitions, and then mea-
sured the width of the magnetic-field-insensitive transi-
tion mp = 0 — mp = 0. As mentioned above, the
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FIG. 4: (a) Raman trace with the quadrupole MOT mag-
netic field on. The trace represents the absorbtion of the
probe pulse following the Raman beams, as a function of the
Raman detuning §. The line width FWHM is around 5 MHz.
(b) Raman trace 4 ms after the quadrupole field has been
switched off. The fitted linewidth is 20 kHz, including 10 kHz
of power broadening due to the Raman beams

quadrupole field of the MOT should be switched off as
fast as possible, in order to maintain the high optical
density needed for the DLCZ-type experiments. How-
ever, switching off the magnetic field generated by the
MOT coils is usually retarded for two reasons. First,
the current in the coils decays exponentially, with a time
constant proportional to the inductance of the coils. Sec-
ond, the field decay time is increased by eddy currents
in the metallic part of our vacuum chamber. Depending
on the metallic configuration of chamber and coils, the
transient period can last for tens of ms. In order to ob-
tain a faster transient, we use a fast-switching electronic
circuit [30, 31]. This circuit allows a quick reversal of
the current in the quadrupole coils in order to compen-
sate for the eddy currents, and resulted in a substantial
reduction of the transient time in our system.



A detailed description of the magnetic field transient
is given in Fig. 5a, which plots the Raman scan linewidth
as a function of the delay from the moment the field was
switched off. Figure 5a then shows the timescale over
which the ground state has its energy-distribution profile
changed from Fig. 4a to Fig. 4b. We can see that after a
few miliseconds, the linewidth asymptotically reaches a
plateau, given by the residual DC field in the chamber,
that we estimate in this case to be on the order of 10 mG.
The dashed line in Fig. ba indicates the measured power
broadening. Shorter transients can be obtained with a
different metallic chamber configuration (like in Ref. 30)
or using non-metallic vacuum chambers.
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FIG. 5: (a) Evolution of the ground state linewidth and (b) of
the optical depth of the sample as a function of the delay from
the time when the current is switched off in the MOT coils.
The linewidth is measured with Raman spectroscopy. The
dashed line represents the measured power broadening due to
the Raman beams. The OD is determined by measuring the
absorbtion of a probe pulse in the sample. In both graphs,
the dashed area represents the window used for measuring
correlations at the single photon level.

In order to estimate the optimal region for photon
counting measurements, it is important to independently
measure the decay of the optical depth after the magnetic
field is switched off. In our setup this is done in a straight-
forward way by turning off the Raman beams and using
a probe pulse close to resonance with the ground state
that concentrates all the atomic population. The results
of such measurement are shown in Fig. 5b, for which the
population was initially pumped to F' = 4 and the probe
tuned 10 MHz below the F' = 4 — F’ = 5 transition.
The optical depth measurements in Fig. 5b were obtained
from the absorption at 10 MHz detuning and assuming
a Lorentzian lineshape for the atomic transition with a
natural linewidth corrected for power broadening by the
probe beam.

Together, the results in Figs. 5a and 5b allow us to
determine an optimal window for the experiments of
Sec. IIIB, i.e., between 3 and 5.5 ms (dashed region in
both figures). The lower limit of this region is determined
by the moment when the residual magnetic field reaches
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a reasonably small value corresponding to an acceptable
decoherence time, and the higher limit by the restriction
that the density should not vary too much throughout
the region. We accepted a variation of about 30% in the
density. The linewidth varies by about 30 kHz in the
same interval.

A better cancellation of the magnetic field can in prin-
ciple lead to even smaller linewidths and, consequently,
longer coherence times. However, improvements along
this line will eventually be limited by a different problem:
the diffusion of atoms out of the excitation region. This
effect of course depends on the temperature of the sample
and on the diameter of the excitation beams. In order to
directly measure this diffusion time, we use again Raman
spectroscopy. In this case, Raman traces are recorded as
a function of the delay between the Raman pulses and
probe. The measurement is done when the magnetic
field is off, such that there is only one narrow peak in
the Raman trace, like in Fig. 3d. In this case, the area of
the peak profile is proportional to the number of atoms
in the excitation region. Figure 6 shows a plot of this
area as a function of delay. We see that the population
decays with a time constant of 900 us, as given by an
exponential fit to the data (solid line). Note that this
measurement was done with beams that have 150 pym di-
ameter, while in the correlation measurements described
later we use beams with 60 pym diameter, leading to a
diffusion time of the order of 360 us.
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FIG. 6: Diffusion of atoms out of the excitation region. The
solid line is an exponential fit with a time constant of 900 ps.
The Raman beam diameter is 150 pum.

B. Nonclassical correlations

In order to characterize the coherence time of the sys-
tem for various quantum information applications, e.g.
for the DLCZ protocol or for generation of conditional
single photons, the measurements must be performed at
the single-photon level. In particular, one must know



how long a single excitation can be stored in the quan-
tum memory. For this purpose, we perform correlation
measurements between fields 1 and 2 as a function of the
time delay At between write and read pulses, thereby
probing how the nonclassical character of these correla-
tions ( and hence of the correlations between field 1 and
the collective atomic excitations) is preserved during the
storage process.

In order to investigate the quantum nature of the cor-
relations, we use the fact that there exists a well-defined
border between the classical and quantum domains for
fields 1 and 2 that can be operationally accessed via co-
incidence detection, as was first demonstrated in the pi-
oneering work by Clauser [32]. In this way, we measure
the joint detection probability pi2 for detecting a photon
in both fields 1 and 2 in the same trial, and the proba-
bilities p1 and ps to register a single detection event in
field 1 and field 2, respectively. By splitting field ¢ with
a 50-50 beamsplitter and directing the output to the two
detectors, the joint probabilities p;; are also measured,
where 7 = 1 or 2. Fields for which the Glauber-Sudarshan
phase-space function is well-behaved (i.e., classical fields)
are constrained by a Cauchy-Schwarz inequality for the
various probabilities [32, 33], namely:

r=lOF (40)
g11 g22

where g11 = p11/pt, 922 = po2/p3, 912(t) = p12/(p1p2),
and ¢ denotes the time separation between the detection

of photons 1 and 2. In our system, g11 = go2 = 2 in the
ideal case. However, in practice, g11 and goo are mea-
sured to be smaller than 2, due to various experimental
imperfections. Hence in our case measuring g2 > 2 her-
alds nonclassical correlations, and in the following we will
use this quantity as another figure of merit to quantify
the loss of coherence in the quantum memory.

The experimental setup used to measure nonclassical
correlations between fields 1 and 2 is shown in Fig. 7. As
already mentioned the sample consists in a cold atomic
ensemble of Cesium atoms in a magneto-optical trap.
Each trial consists of a period of cooling and trapping,
and of a period of measurement during which all the
beams responsible for cooling and trapping the atoms
are switched off. During the measurement period, the
atoms are initially prepared in level |g) (F=4) by optical
pumping with a laser beam resonant with the transition
651/2(F = 3) — 6P3/2(FI = 4)

A laser pulse with 150 ns duration from the write beam
then illuminates the sample. The write beam is tuned
near the |g) — |a) (corresponding to F' = 4 — F' =
4 of the D5 line, at 852 nm) and induces spontaneous
Raman scattering to the initially empty level |s) (F' = 3).
The intensity of the pulse is made sufficiently weak, such
that the probability of creating more than one excitation
in the symmetric collective mode is very low. After a
variable delay At, the stored excitation is converted into
a photon in field 2, by sending a read pulse tuned to the
transition |s) — |b) (corresponding to F' =3 — F' =4
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transition of the D; line, at 894 nm). The write and
read beams are orthogonally polarized and combined at
the polarizing beam splitter PBS 1 (see Fig. 7). At PBS
1, the write and read beams are spatially mode-matched
with a measured overlap of about 93%. The beams are
focussed to a waist of about 30pm in the sample region.

Filter 2

Write  PBSI PBS2
-

SM fiber BS

D2 D3 D4

D1

SM fiber BS Data acquisition

FIG. 7: Experimental setup. Write and read pulses propagate
sequentially into a cloud of cold Cs atoms (MOT), generating
pairs of correlated output photons 1 and 2. The write and
read pulses have orthogonal polarizations, are combined at
polarizing beam splitter PBS1, and then focused in the Cs
MOT with a waist of approximately 30 um. The output fields
are split by PBS2, which also serves as a first stage of filtering
the (write, read) beams from the (1,2) fields. For example,
field 2 is transmitted by PBS2 to be subsequently registered
by detector D3 or D4 while the read pulse itself is reflected
at PBS2. Further filtering is achieved by passing each of the
outputs from PBS2 through separate frequency filters. SM
stands for single mode.

After the MOT, fields 1 and 2 are detected at the
two different outputs of PBS 2. A challenging aspect
of the experiment is to separate the classical pulses from
the weak nonclassical fields, since they are temporally
and spatially overlapped, and their frequencies are only
9 GHz apart. This is done in several steps, which are
explained in detail in Refs. [11], [14], and [17]. After
the filters, fields 1 and 2 are coupled into optical fibers,
split by 50/50 fiber beam splitters, and detected by four
single-photon Silicon avalanche photodiodes (APD). Fi-
nally, the electronic signals of the APDs are sent to a
data acquisition card, in order to record the detection
events and analyze the correlations.

1. Coherence time measurements

In order to characterize the system’s coherence time,
we measure g12 and R as a function of the delay At be-
tween write and read pulses. We then compare the the-
oretical quantity pi2(At) = Epih(At) to the measured
g12(At) by way of a single overall scaling parameter ¢
for all At, as the rate of single counts in fields 1 and 2
(p1 and p2) is measured not to depend on At, to within
20%. In Fig. 8a we show our results for g with the



MOT magnetic field on together with the corresponding
theoretical fitting. This figure was presented already in a
previous article [17] and shows a fast decay of the coher-
ence between fields 1 and 2, taking place in a time scale
of less than 200 ns. Note, however, that the coherence
time is actually smaller than 100 ns, since the write pulse
itself has a duration of 150 ns. The repetition rate of the
trials in this case is 250 kHz. The rate of coincidence
events (detection of photon 1 and photon 2 within the
same trial) is between 2 and 3 counts per second.

The theoretical joint probability pi% is calculated from
Eq. (30), assuming C' = 1. In this way, we need to per-
form integrals of the F' function over the z coordinate.
This function depends on z only through the parameters
ag and a,. The atomic ensemble is assumed to be ini-
tially unpolarized, i.e., with the atoms evenly distributed
among all Zeeman states of the |g) level. For the ground
states of Cesium, we have that the hyperfine Landé fac-
tors g4 and g5 of levels |g) and |s), respectively, are given
by 1Bge/h = —pBgs/h = 0.35 MHz/G, so that we can
write

ag = 21Km, (%) , (41a)
a5 = —2mKm, (%) , (41D)

where we considered the magnetic field for the MOT in
the form B, = bz, with b the field gradient in the center
of the MOT, and the constant K given by

_ 1BgybL

K
h

(42)
The value of Kmp gives an estimate for the inhomoge-
neous broadening associated with level |F, mp) due to the
magnetic-field gradient b. Note that writing a, and a, as
in Egs. (41) allows us to perform all spatial integrations
over the dimensionless coordinate s = z/L, and to com-
bine many of the relevant experimental parameters in a
single parameter (K). For our experiment, L = 3.6 mm
and b = 8.7 G/cm, so that K = 1.1 MHz. This K value
is consistent with the measurement of the ground-state
broadening shown in Fig. 4a.

The solid curve in Fig. 8a shows the theoretical fit-
ting of p12(At) to the experimental data. We considered
K = 1.1 MHz in the theory, as estimated above for our
experimental conditions. The only fitting parameter used
was &, which was found to be & = 1.05 x 10%. Note that
the theoretical quantity p!% gives the probability for joint
detection of the two photons, while g15 is a measure of
this joint probability normalized by the probability of un-
correlated coincidence detections. Thus the scaling factor
& should be given roughly by the inverse of the probability
for these uncorrelated coincidences. A theoretical estima-
tion for this value is given by ¢ = [pifi(At — o0)] 71,
i.e., the inverse of the theoretical joint probability af-
ter the coherence has completely decayed. For the solid
curve in Fig. 8a, we find £** = 1.96 x 108. The difference
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between & and & can be attributed to other sources of
uncorrelated coincidences (such as dark counts in the de-
tectors, or leakage from the filters) that are not accounted
by the theory, which leads to & < . It is also impor-
tant to have in mind that the noise floor is higher when
the pulses are overlapping, since there is more leakage
from the filters in this condition. This results in some
extra discrepancy when comparing theory to experiment
by means of one single scaling parameter to all regions of
Fig. 8a.

FIG. 8: Measurement of gi2 as a function of the storage
time, (a) with the quadrupole field on (taken from [17]) and
(b) with the quadrupole field off. The observed decay in (b)
is consistent with the residual magnetic field in the chamber,
as measured by Raman spectroscopy.

The g12(At) measurements with magnetic field off are
presented in Fig. 8b. In this case, we use the information
acquired from the investigation of Sec. III A and turn off
the field for a duration of 5.5 ms, at 40 Hz repetition rate.
From the magnetic-field-off period, we use for correlation
measurements only the 2.5 ms window shown in Fig. 5.
This 2.5 ms window is then divided in 208 trial periods
of 12 us, which results in an overall repetition rate of
8.3 kHz. In the beginning of each trial, the trap light of
the MOT (tuned in the F' =4 to F’ = 5 transition of the
Dy line) is turned on for 0.6 us, and its repumper laser
(tuned from F = 3 to F/ = 4) for 1 ps. This procedure
prepares the system in the proper initial state, with all
atoms at the F' = 4 hyperfine level of the ground state.
In this case, the rate of coincidence counts drops to about
0.33 coincidences/s.



Figure 8b shows then an increase of more than two
orders of magnitude on the coherence time of the sys-
tem, when the magnetic field is turned off. The coher-
ence time is now limited mainly by the rate at which
we can turn off the magnetic field, and also to some ex-
tent by our ability to magnetically isolate the system.
Note that in Fig. ba the Raman-trace linewidth indicates
that the magnetic field in the measurement window is
still decaying. The solid curve in Fig. 8b gives the decay
theoretically expected for a magnetic-field gradient such
that K = 12 kHz, corresponding to magnetic fields of
the order or smaller than 30 mG acting on the ensemble.
This gives a reasonable approximation to the behavior of
g12 under the action of the residual magnetic field, even
though the spatial dependence of this field can be more
complicated than a simple linear gradient. The change in
K from 1.1 MHz to 12 kHz is consistent with the reduc-
tion of the ground state linewidth between the two cases,
as measured directly by the Raman spectroscopy setup.
Finally, for Fig. 8b &€ = 0.67 x 108 and £ = 2.2 x 108.

From Fig. 8.b, we see that the correlations are still
highly nonclassical after a storage time of 10 us. How-
ever, from the theoretical fitting we can infer that gio
should became smaller than 2 at about 25 us, which gives
an estimation for our quantum memory time.

As discussed above, the measurements with g1 > 2
give a strong indication of the nonclassical correlations
observed in our system, based on reasonable assumptions
for g11 and go2. The most appropriate verification of the
nonclassical nature of fields 1 and 2, however, is given by
the measurement of R as defined in Eq. (40). Such mea-
surements with the magnetic field off are shown in Fig. 9.
More specifically, in Fig. 9a we show the measurements
of g11 and goo for the same data points of Fig. 8b. Sub-
stituting the results of Figs. 8b and 9a in (40), we then
obtain the values of R shown in Fig. 9b, which confirm
the strong nonclassical correlation present in our system
for more than 10 us.

The R measurement presents considerably larger error
bars than for gi;2. This comes from the large statistical
uncertainties involved in the determination of gs2, which
requires measurement of the two-photon component of
field 2 [14]. For this reason, we decided to carry out a
much longer run of the experiment for the longest coher-
ence time we were able to probe, 10 us, which resulted
in the considerably smaller statistical error of this point.

2. Two-photon wavepackets

Central to the DLCZ protocol is the ability to write
and read collective spin excitations into and out of an
atomic ensemble, with efficient conversion of discrete spin
excitations to single-photon wavepackets. A critical as-
pect of such wave packets is that they are emitted into
well defined spatiotemporal modes to enable quantum
interference between emissions from separate ensembles
(e.g., for entanglement based quantum cryptography [5]).
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The high efficiencies achieved in the work of Ref. 14 en-
abled us to investigate in detail the temporal properties
of the nonclassical correlations between emitted photon
pairs [17], providing a direct look at various important
features of the two-photon wavepacket (field 1 + field 2)
generated by the system. In the following analysis, our
main quantity of interest is p,(t1,t2), the joint probabil-
ity for photoelectric detection of photon 1 at time ¢; and
photon 2 at time ¢, within a time window of duration
7. The times for this quantity are counted starting from
the beginning of the write pulse. This quantities is de-
termined from the record of time-stamped detections on
all four photodetectors. The detectors have a time reso-
lution of 2 ns (minimum bin size), but usually we need
to consider larger bins to acquire enough events for the
statistics.
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FIG. 9: (a) Measurement of gi1 (open squares) and g22 (open
circles) as a function of the storage time. (b) Measurement
of the coefficient R as a function of the storage time. The big
statistical errors are mainly due to statistical uncertainties in
the measurement of g11 and g22. The points at 10us have
been measured for a much longer time and exhibit smaller
statistical error.

In our earlier experiments [17], we focused on two
cases: (I) nearly simultaneous application of write and
read pulses with offset At = 50 ns shorter than the du-
ration of either pulse, and (II) consecutive (non over-
lapping) application of write and read pulses with At =
200 ns. Results for p,(t1,t2) are presented in Fig. 10. In
case (I), Fig. 10a shows that p,(t1,t2) peaks along the
line t2 — tl = 5t12 ~ 50 ns with a width At12 ~ 60 ns, in
correspondence to the delay dt12 and duration Atqo for



read-out associated with the transition |s) — |b) — |g)
given an initial transition |g) — |a) — |s) [12]. In case
(IT) with the read pulse launched 200 ns after the write
pulse, the excitation is “stored” in the atomic ensemble
until the readout. The production of correlated photon
pairs should now be distributed along to ~ At + dt19
with width ~ Atj5. Instead, as shown in Fig. 10c,
pr(t1,t2) peaks towards the end of the write pulse (i.e.,
t1 2 100 ns), and near the beginning of the read pulse
(i.e., 200 S t2 < 300 ns). Early events for field 1 lead
to fewer correlated events for field 2, as p,(t1,t2) decays
rapidly beyond the line to —t; = 74 ~ 175 ns. The
marked contrast between p,(t1,t2) for At = 50 and 200
ns results in a diminished ability for the conditional gen-
eration of single photons from excitation stored within
the atomic ensemble [14] and, more generally, for the
implementation of the DLCZ protocol for increasing At.
The underlying mechanism is again decoherence within
the ensemble.

By contrast, when the magnetic field is turned off, this
distortion in the two-photon wavepacket is eliminated
due to the extended coherence time. We now observe
the shape shown in Fig. 10e. The delay in Fig. 10e is
At =1 ps.

The theoretical results corresponding to these three sit-
uations are shown in frames (b), (d), and (f) of Fig. 10.
These are plots of Eq. (39) averaged over 4 ns time win-
dows for both t5 and ¢y, the same time window used
for the experimental data. We also considered pulses of
trapezoidal shape, with 20 ns rising time, and FWHM of
150 ns for the write pulse and 120 ns for the read pulse.
These values correspond to the experimental parameters.
The only effect of both the time window and pulse rising
time is to smooth the edges of the distribution. Differ-
ently from the case of integrated probabilities, it is nec-
essary here to introduce more details in the description
of the pulse shapes, since the theoretical description for
this signal predicts that it is directly related to the pulse
profiles [see Eq. (36)].

The main point that calls our attention in these figures
is the fact that the theory offers a reasonable explanation
for the data from consecutive pulses (At = 200 ns) with
magnetic field on, but not for overlapping pulses or At =
1 ps with magnetic field off. This discrepancy can be
simply understood, however, if we remember that one
of the main approximations of our theory is to consider
low intensities for both write and read pulses. At low
intensities and zero magnetic field, the theory gives a
small and constant probability for the photon 2 emission
after photon 1. From Eq. (36), we see that the magnetic
field introduces different phases for different groups of
atoms. These different phases are proportional to the
time difference between the emission of photons 2 and
1, and result in an overall decay of the probability of
emission of the second photon over time. In Figs. 10b
and 10f, however, we see that the predicted decay time is
much longer than the one inferred from the experimental
data.
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On the other hand, for the actual experiment, the high
intensity of the read pulse should lead to a fast emission
of photon 2 once the atom is transferred to level Fs. This
is consistent with the short duration of correlation Aty o
in Figs. 10a and 10e, which can be understood as com-
ing from the fast depletion of the Fy state. However,
this reasoning cannot explain the shape of Fig. 10c, since
the strong excitation alone should result in a similar fast
depletion in the beginning of the read pulse for any de-
tection time of photon 1 (as seen in Fig. 10e). The good
comparison between Figs. 10c and 10d comes from the
fact that the decay due to the magnetic field takes place
before the delayed readout process occurs. The shape
in Fig. 10c is then a convolution of a uniform excitation
probability over ¢; (like in Fig. 10e) with the excitation-
probability distribution of 10d.
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FIG. 10: Theory and experiment for two-photon wavepackets
P, (t1,t2). (a) Measured two-photon wavepackets for the case
where write and read pulses are overlaped with a delay of 50
ns, with the quadrupole magnetic field on. (b) Theoretical
predictions for the same conditions as in (a). (c) Measured
two-photon wavepackets for the case of consecutive (non over-
lapping) write and read puses with a delay of 200 ns, with
quadrupole field on. (d) Theoretical predictions for the same
conditions as in (c). (e) Measured two-photon wavepackets
for nonoverlapping write and read pulses, with quadrupole
field off. The delay between write and read pulses is 1 us. (f)
Theoretical predictions for the same conditions as in (e). The
vertical scales are given in arbitrary units proportional to the
joint probability of detecting photons 1 and 2. See text for
further details.



IV. OPTICAL PUMPING

The theory developed to explain the data in Fig. 8
can also be used to devise new ways to improve the
system. The inclusion of the Zeeman structure in the
theory, for example, allows the study of different polar-
ization schemes for both classical excitation and photon
detection. It also allows the investigation of the role of
the atomic initial state on the measured correlations. In
Fig. 11 we give two examples of possible ways to im-
prove the system. The solid and dashed lines in the fig-
ure represent the two experimental conditions of Fig. 8
(initially unpolarized samples with K = 1.1 MHz and
K = 12 kHz), but now with the same scaling factor.
The dash-dotted curve shows how the K = 12 kHz curve
changes if the system is initially spin polarized, with all
atoms in the |F = 4, mp = 0) state. Note that in this
case the value of p; 2 considerably increases, and the sys-
tem develops a plateau coming from the predominant
transition |F = 4,mp =0) —» |F =3,mp =0) — |F =
4, mp = 0), which is magnetic-field insensitive. Further-
more, it is possible to devise a polarization scheme of ex-
citation that allows only this specific transition for any
At, e.g. as when the write pulse and field-1 detection are
o1 polarized, and the read pulse and field-2 detection are
o~ . This is the case for the dotted curve in Fig. 11.

1
At (us)

FIG. 11: Variation of p1 2 with the delay At between write and
read pulses for (solid curve) K = 1.1 MHz and an unpolar-
ized sample, (dashed curve) K = 12 kHz and an unpolarized
sample, and (dash-dotted curve) K = 12 kHz and an initially
spin polarized sample with all atoms in |F' = 4,mr = 0). The
dotted curve corresponds to an initially spin polarized sample
classically excited by fields with polarizations such that only a
magnetic insensitive transition is allowed, see text for details.
The same arbitrary scaling factor was used for all curves.

The idealized improvements described by the dotted
and dash-dotted curves of Fig. 11, however, will probably
be limited by two effects which are not taken into account
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by the theory. First, in our experimental setup we should
see a decay with a timescale on the order of 360 us due to
the average time the cold atoms take to cross the 60 pm
beam diameter of the classical write and read pulses. Sec-
ond, the theory assumes the presence of a magnetic field
predominantly in the z direction, which defines the quan-
tization axis. This can be obtained by applying an extra
DC magnetic field along that direction,[34, 35] but any
residual transverse field should lead to some decay of the
plateau. In spite of these restrictions, however, we be-
lieve that such improvements could lead to an increase
of more than an order of magnitude over the largest ex-
perimental decoherence time of Fig. 8. It is also clear
that there is a benefit in the careful preparation of the
initial state for the magnitude of the measured correla-
tions. This is an important point that should also be
taken into account when considering the implementation
of the DLCZ protocol in vapor cells.

V. CONCLUSION

We have presented a detailed study of the decoher-
ence processes in the generation of photon pairs from
atomic ensembles, via the DLCZ protocol of ref. [5]. We
have identified the main cause of decoherence for cold
atoms in magneto-optical traps as being the inhomoge-
neous broadening of the hyperfine ground states due to
the quadrupole magnetic field used to trap the atoms. A
detailed theory has been developed to model this effect.
We also reported a series of measurement to characterize
and control the decoherence using copropagating stim-
ulated Raman scattering. These measurement allowed
us to switch off the quadrupole magnetic field in a con-
trolled way. With the magnetic field off, we observed
highly nonclassical correlations between the two emitted
photons, for a storage time of up to 10 us, an improve-
ment of more than two orders of magnitude compared to
previous results with cold atoms. Furthermore, contrary
to all related experiments reported up to now, the coher-
ence time is now two orders of magnitude larger than the
excitation pulses duration. This is a crucial step in order
to use atomic ensembles as a quantum memory to store
conditional single photon states or entanglement between
two distant ensembles.
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Measurement-induced entanglement for excitation
stored in remote atomic ensembles

C. W. Chou', H. de Riedmatten®, D. Felinto', S. V. Polyakov’, S. J. van Enk* & H. J. Kimble'

A critical requirement for diverse applications in quantum infor-
mation science is the capability to disseminate quantum resources
over complex quantum networks"?. For example, the coherent
distribution of entangled quantum states together with quantum
memory (for storing the states) can enable scalable architectures
for quantum computation’, communication* and metrology”.
Here we report observations of entanglement between two atomic
ensembles located in distinct, spatially separated set-ups. Quan-
tum interference in the detection of a photon emitted by one of the
samples projects the otherwise independent ensembles into an
entangled state with one joint excitation stored remotely in 10°
atoms at each site®. After a programmable delay, we confirm
entanglement by mapping the state of the atoms to optical fields
and measuring mutual coherences and photon statistics for these
fields. We thereby determine a quantitative lower bound for the
entanglement of the joint state of the ensembles. Our observations
represent significant progress in the ability to distribute and store
entangled quantum states.

Entanglement is a uniquely quantum mechanical property of the
correlations among various components of a physical system. Initial
demonstrations of entanglement were made for photon pairs
from the fluorescence in atomic cascades”® and from parametric
down-conversion’. More recently, entanglement has been recognized
as a critical resource for accomplishing tasks that are otherwise
impossible in the classical domain'. Spectacular advances
have been made in the generation of quantum entanglement for
diverse physical systems"?, including entanglement stored for many
seconds in trapped ions for distances on the millimetre scale'®'",
long-lived entanglement of macroscopic quantum spins persisting
for milliseconds on the centimetre scale'’, and remote entanglement
carried by photon pairs over distances of tens of kilometres of optical
fibres".

For applications in quantum information science, entanglement
can be created deterministically by precisely controlling quantum
dynamics for a physical system, or probabilistically by quantum
interference in a suitable measurement with random instances of
success. In the latter case, it is essential that success be heralded
unambiguously so that the resulting entangled state is available for
subsequent use. In either case, quantum memory is required to store
the entangled states until they are required for the protocol at hand.

There are by now several examples of entanglement generated ‘on
demand”', beginning with the realization of the Einstein—Podolsky—
Rosen (EPR) paradox for continuous quantum variables' and the
deterministic entanglement of the discrete internal states of two
trapped ions". Important progress has been made towards measure-
ment-induced entanglement on various fronts, including the obser-
vation of entanglement between a trapped ion and a photon (ref. 16
and references therein).

Here, we report the initial observation of entanglement created
probabilistically from quantum interference in the measurement
process, with the resulting entangled state heralded unambiguously
and stored in quantum memory for subsequent use. As illustrated in
Fig. 1, the detection of a photon from either of two atomic
ensembles (L, R) in an indistinguishable fashion results in an
entangled state with one ‘spin’ excitation shared at a distance of
2.8 m between the ensembles and distributed symmetrically among
~10° atoms at each site®. Confirmation of entanglement is achieved
by mapping this stored excitation onto light fields after 1-p.s delay®'”
and by suitable measurements of the quantum statistics of the
resulting optical fields. Our results provide the first realization of
the capability to transfer a stored entangled state of matter to an
entangled state of light.

Our experiment is motivated by the protocol of Duan, Lukin,
Cirac and Zoller (DLCZ)® for the realization of scalable quantum
communication networks with atomic ensembles. The DLCZ pro-
tocol introduced a number of ideas for quantum information
processing and is the subject of active investigation. In this direction,
nonclassical correlations'”* and entanglement have been observed
between pairs of photons emitted by a single atomic ensemble.
Observations of coherence between two cylindrical volumes of cold
rubidium atoms within a single magneto-optical trap have also been
reported®, although entanglement was not demonstrated between
the two regions®”*.

A simple schematic of our experiment is given in Fig. 1, with
further details provided in refs 17, 21 and 23. For the writing stage of
the protocol, two classical pulses traverse the L and R ensembles in
parallel and generate fields 11, 1z by spontaneous Raman scattering
(see Fig. 1a). The intensity of the pulses is made sufficiently weak that
the probability of creating more than one excitation in the symmetric
collective mode® of the ensemble is very low™".

Entanglement between the L and R ensembles is created by
combining the output fields 1y, 1z on the beamsplitter BS;, with
outputs directed to two photodetectors Dy,, Dy, (see Fig. 1a). For
small excitation probability and with unit overlap of the fields at
BS;, a detection event at Dy, or Dy, arises indistinguishably from
either field 1y, or 1, so that the L and R ensembles are projected
into an entangled state, which in the ideal case can be written
asﬁ,29:

[¥1r) = el |0)g = €™ er]0); |1y (D)

where [0)r g, | 1)1 r refers to the two ensembles L and R with 0 and
1 collective excitations respectively, e (or eg) is the normalized
amplitude of photon generation from ensemble L (or R), and the
sign (4 or —) is set by whichever detector records the event. The
phase n, = AB,, + Ay, where AS,, is the phase difference of the
write beams at the L and R ensembles, and Avy; is the phase
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difference acquired by the 1; and 1y fields in propagation from the
ensembles to the beamsplitter BS;. We note that to achieve
entanglement as in equation (1), 7, has to be kept constant
from trial to trial.

To verify the entanglement, we map the delocalized atomic
excitation into a field state by applying simultaneously strong read
beams at the two ensembles (see Fig. 1b). If the state transfer were to
succeed with unit probability, the conditional state | ¥ g) of the
ensembles would be mapped to an entangled state of two modes for

6,29,

the Stokes fields 2; and 2y given in the ideal case by
| Bir) = eL|1);,10),, * € eg|0), 1), @)

where [0),, 5.,[1),, 5, refer to the Raman fields 2;, 2g with 0, 1
photons, respectively. Here, 7, = AB; 4+ Ay,, where AS, is the phase
difference of the read beams at the L and R ensembles, and Av, is the
phase difference acquired by the 2; and 2y fields in propagation from
the ensembles to the beamsplitter BS; in Fig. 1b. In our experiment,
the phases 7, and 7, can be independently controlled and are actively
stabilized by utilizing auxiliary fields at 1.06 pm that co-propagate

a Write

1,064 nm

I =28m

R

ey o
Write : 2{?“ 1
l9) 3

— e Is)

Read

— e s

Figure 1| An overview of our experiment to entangle two atomic ensembles
is shown. a, Set-up for generating entanglement between two pencil-shaped
ensembles L and R located within spherical clouds of cold caesium atoms.
The atomic level structure for the writing process consists of the initial
ground state |g) (65,5, F = 4 level of atomic caesium), the ground state |s)
for storing a collective spin flip (6S,/,, F = 3 level), and the excited level |e)
(6P3), F' = 4). The transition |g) — |e) in each ensemble is initially coupled
by a write pulse detuned from resonance to generate the forward-scattered
anti-Stokes field 1 from the transition |e) — |s). The L and R ensembles are
excited by synchronized writing pulses obtained from beamsplitter BS,,.
After filtering, the anti-Stokes fields 1; and 1y are collected, coupled to
fibre-optic channels, and interfere at beamsplitter BS;, with outputs directed
towards two single-photon detectors D}, and Dy, b, Schematic for
verification of entanglement between the L and R ensembles by conversion
of atomic to field excitation by way of simultaneous read pulses obtained

e
AOMS Filter /2
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along the paths of the write and read beams and of the 11, 1 and 2y,
2g fields.

Of course, the states in equations (1) and (2) are idealizations that
must be generalized to describe our actual experiment®*”*. Specifi-
cally, the presence of various sources of noise necessarily transforms
these pure states into mixed states. Equations (1) and (2) also neglect
the vacuum contribution as well as higher-order terms, which are
intrinsic to DLCZ protocol and which otherwise arise from diverse
experimental imperfections. Moreover, the above analysis assumes
that all excitations are in the correct ‘modes’ (both for optical fields
and for the collective atomic ‘spin flips’), that excitations of the
ensembles map one-to-one to photons in fields 1 and 2, and that
diverse sources of background light are absent.

The procedure that we have devised to provide a robust, model-
independent determination of entanglement is based upon quantum
tomography of the 2; and 2y fields (see Supplementary Information
for details). Because entanglement cannot be increased by local
operations on either of the two ensembles, the entanglement for
the state of the ensembles will be always greater than or equal to that

1,064 nm
filters

Dip

Data
acquisition

plate

1,064 nm

filters

Data

acquisition

1,064 nm
filters

1
[
[
[
1
1
1
1
|
' 20

from BS,. The read pulses reach the samples after a programmable delay
from the write pulses, and couple the transition |s) — |e') (|e’) being the
6P/, F' = 4level), leading to the emission of the forward-scattered Stokes
fields 2; and 2y from the transition |e') — |g). The upper inset shows the
configuration used to measure the diagonal elements p ;; of 55, ,, in equation
(3) from the photo-detection events at D5,, D, and D,.. Reconfiguring the
fibre connections, we can easily pass from the configuration of the upper
inset to the one of the lower inset, which is used to generate interference of
the 2; and 2y fields at beamsplitter BS, to measure the off-diagonal
coherence d in g5, .. In @ and b, the incident write and read beams are
orthogonally polarized and combined at a polarizing beamsplitter (not
shown), and are focused to a waist of about 30 pm in the sample region. All
beamsplitters BS are polarization-maintaining fibre beamsplitters. The
~12m arms of both write and read interferometers are actively stabilized
using an auxiliary Nd:YAG laser at 1.06 pm.
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measured for the state of the light fields. Specifically, conditioned
upon a detection at Dy, or Dy},, we consider the density matrix:

Poo 0 0 0
0 Por d 0

—

3)

Pr2a=5 0 d" po 0

0 0 0 Pu

which is written in the basis |1),, [m),,, with the number of photons
{n, m} = {0, 1}. p;; is then the probability to find i photons in mode
2; and j photons in mode 2y, and d gives the coherence between the
[1),,10),, and |0),, |1),, states. 55 ,, is obtained from the full density
matrix p,, 5, by restricting it to the subspace where there is at most
one photon in each mode, with then P = pyy + po; + p1o + p11. The
concurrence C(6y, »,) for g », provides a lower bound for the
concurrence C(p, ) for ps, 2, [Cp2, 2,) = PC(p”zL,zR)]7 so we devise
measurements to deduce the various components of g5 »,. The
concurrence C(g, ;) can then be calculated from equation (3) by
way of ref. 30:

PC = max(2|d| — 2+/(Poop11),0) )

The entanglement of formation E follows directly from C, where E
and Cboth range from 0 to 1 for our system and E is a monotonically
increasing function of C (ref. 30).

As a first step in the determination of C we measure the diagonal
elements p ;. As shown in Fig. 1b, the field-2 output of each ensemble
is directed to different sets of detectors in order to record photon-
counting probabilities for the fields 2, 2y separately. From the record
of photoelectric counting events, we then deduce the diagonal
elements of g, ,,, which are listed in Table 1. From equation (4)
and noting that |d|* = popo;, a necessary requirement for C > 0 is
that there be a suppression of two-photon events relative to the
square of the probability for single-photon events for the fields 2, 2,
that is: hﬁz) = p11/(p1opo1) < 1. For our measurements, we find P =
0.30 = 0.04 for events conditioned on detection at D,,, and hcz) =
0.35 + 0.04 for events conditioned on Dy, (ref. 21). In contrast, for
non-conditioned events, we find h2) = 0.99 = 0.04.

The second step in our tomography protocol is to determine the
coherence term d in equation (3), which we accomplish by adding a
relative phase shift ¢ for the fields 21, 2g, and by combining them at
the beamsplitter BS, shown in Fig. 1b. By recording the conditional
count rate after the beam splitter as function of ¢, we can measure an
interference fringe with a visibility V; with |d| then following from V/
and the p ;. Roughly, for 50/50 beamsplitters and neglecting higher-
order terms (that are employed in our actual analysis), we would have
|d] = V(p1o + po1)/2.

Figure 2 shows conditional counts N,,, N,;, + N, as functions of
¢. These data demonstrate that the indistinguishable character of
measurement events at detectors D;, (Fig. 2a) and Dy, (Fig. 2b)
induces a high degree of coherence between the otherwise indepen-
dent ensembles L, R (refs 6 and 26). Indeed, we deduce visibilities
Via=(70%2)% and V;, = (71 £2)% for the associated
conditional states.

Table 1 | Diagonal elements of the density matrix g5, 5., deduced from
the records of photo-electric counts

Probability Dia Dy
Poo 0.98510 = 0.00007 0.98501 = 0.00007

P1o (7.38 = 0.05) X103 (619 = 0.04) x 103
poi (751 + 0.05) x 103 (8.78 + 0.05) x 103
pn 1.7 £02)x10°° 19 +0.2)x10°°

The values of pj; are referenced to the location of detectors D, 2p,2c, and were obtained by
considering unit detection efficiency, which gives a more conservative (smaller) lower bound
for the concurrence than the actual (larger) field concurrence for finite efficiency <1. See the
Supplementary Information for further details, and equation (3).
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A notable feature of these results is that the interference fringes
have relative phase w for the cases of detection at Dy,, Dy, in
agreement with equations (1) and (2). We observe similar fringes if
the phase 1, between the write beams is varied instead of ¢. More-
over, if the fields 1;, 1g are combined at the beamsplitter BS; with
orthogonal polarizations (by way of the half-wave plate in Fig. 1a), we
find that the visibility from interference of fields 2, 2y drops to near
zero, because in this case there is no longer measurement-induced
entanglement associated with quantum interference for detection of
fields 11, 1x (see Supplementary Information).

With equation (4), the measured values for the visibility Vand for
the various pj; are sufficient to deduce a lower bound for the
concurrence C for the field state g5, », at the location of detectors
D5, ob,2c- With no correction for detection efficiencies or propagation
losses, and without subtraction of any background, we find:

Cra(f2.2,) =(2.4£0.6)X10° >0,
)
Civ(02,.2,) =(1.9F0.6)X 107> >0

conditioned upon detection at either Dy, or Dy;. This conclusively
demonstrates a non-zero degree of entanglement between the
ensembles, albeit with the concurrence Cy g small. The small differ-
ence between the concurrence for the states conditioned on Dy, or
Dy}, can be explained by an asymmetry in BS; (see Supplementary
Information).

Beyond the firm lower bound given by equation (5), we can make a
better estimate of the degree of entanglement Cy i between the L and
R ensembles by using detailed measurements of the propagation

AN,, ON, +N,
a 300 —  ——————————
D1a

¢

200 - B

100 —

300

200

100

ol . 1
0 100

1 1 1
200 300 400

¢ (degrees)
Figure 2 | Coherence between the atomic ensembles L, R induced by a
measurement event of the fields 1, and 1 at detector D;, or D;,. Shown is
the number of coincidences N, (triangles) and Ny, + N (circles)
recorded by the respective detectors D, ,p,» for the fields 2; and 2 with the
interferometer arrangement of Fig. 1b as a function of the relative phase ¢.
In a, Ny, op,2c are conditioned upon a detection event at Dy, with no count at
D1, while in b, N5, 5}, 5 are conditioned upon an event at Dy}, with no count
at Dy,. At each setting of ¢, data are acquired for 150 s with a detection
window of width 190 ns. Although the interference fringes have comparable
visibility, the different sizes arise from unequal quantum efficiencies for
detectors D5, and Dyy, 5 (see Supplementary Information). The visibility
values are obtained from an average of the visibilities of the red and black
curves, respectively. Error bars reflect + one standard deviation due to the
finite number of counts.
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efficiencies from the atomic ensembles to the plane z, of the detectors
shown in Fig. 1b (see Supplementary Information). Figure 3 gives an
inference of the density matrix 65 , and thereby of the concurrence
Ca (p“g’hzk) at zo and at two other locations z,—; , along the path from
the ensembles to the detectors (see Fig. 1b), assuming a constant
visibility. In general, C increases in direct correspondence to the
reduced level of losses for the 2; and 2y, fields at locations closer to the
ensembles. At location z, corresponding to the output edges of the
atomic ensembles, we find the result:

Clt =Ch (95 2, ) = 0.021 £ 0.006 >0,
(6)
Cl = (632, ) = 0.016 £ 0.006 > 0

To move beyond this result, we need more detailed information
about the efficiencies £ 1 with which stored excitation in the atomic
ensembles is converted to the propagating light fields 2; and 2. Our
earlier measurements included comparisons to a simple model*' and

a 0.035 - D, ® o
DWb L o
0.030 - Aty 190 ns 120 ns
i !
0.025 - ; ':
. | |
S 0.020 | ;
5 : :
2 1 i
S 0.015 - : :
© | |
0.010 - i ;
: : *%
' 1
0.005 - i ; ;
| 1
| 1
0.000 : :
Z, Z4 Z,
Location
b

1300 10 01 1

1
0.1
0.01
0.001
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111700100

1 11
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0.1
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001001 77gp 10 01 11

0.1
0.01
0.001
0.0001

0.1
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0.001 0.001 0.001
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001051739910 01 11 0177700 1001 1001379010 01 11
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Figure 3 | Inference of the concurrence C* (a) and density matrix 57 ,, (b)
at the three locations z; indicated in Fig. 1b. At each location, two pairs of
results are given corresponding to the measurement-induced state created
from detection at D;, and Dy, taking into account the efficiency of the
detectors and propagation losses. a, Concurrence C, for two different
detection windows At 4 at D5, 51,5 Filled symbols are for Atq = 190 ns,
enough to acquire the whole temporal wavepacket of field 2. Open symbols
are for Aty = 120 ns. We see then that the degree of entanglement can be
further enhanced, similar to the increase of nonclassical correlations
between fields 1 and 2 reported in ref. 23 for specific detection windows for
these fields. All values shown in this figure, including the ones for z, are
already corrected for the efficiencies of the detectors. Error bars reflect = 1
standard deviation, taking into account the finite number of counts and
the uncertainties in the efficiency and propagation loss. b, Density matrix
0% 5, given in the basis |n), |m), corresponding to equation (3) with

{n, m} = {0, 1} for Atq = 190 ns.
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allowed an inference £ g = 0.10 = 0.05. The measurement of the
losses together with the values of p;; at the detectors yields
P10+ poir = 11% at the output of the ensembles (z, plane) for our
current experiment. This value together with the estimated £  then
indicates that p oo — 0 for the conditional state p y of the ensembles,
so that Cp g = V = 0.7, suggesting that pp r is close to the ideal
entangled state of equation (1). The low measured values for the
entanglement between fields 2; and 2y are apparently principally a
consequence of the low readout efficiency £; r of the atomic
excitation. We stress that this inference of C for the state inside the
ensembles must be confirmed by subsequent experiments and is
offered here to provide some insight into future prospects for
quantum protocols with entangled ensembles. This also emphasizes
that a central point in subsequent work should be the improvement
of £ k.

In conclusion, we have achieved entanglement between a pair of
atomic ensembles separated by 2.8 m, with the entangled state
involving one spin excitation within a collective system of roughly
10° atoms at each site L and R. The entangled state is generated by
and conditioned upon an initial detection event, and is thus
produced in a probabilistic fashion. However, this initial event
heralds unambiguously the creation of an entangled state between
L and R ensembles, which is physically available for subsequent use,
as, for example, by mapping to propagating optical fields, which can
in principle be accomplished with high efficiency. We emphasize that
our measurements relate to an actual physical state of the L and R
ensembles and of the 2; and 2y fields, and are not an inference of a
state based upon post-selection. Our work provides the first example
of a stored atomic entangled state that can be transfered to entangled
light fields, and significantly extends laboratory capabilities for
entanglement generation, with now-entangled states of matter stored
with separation a thousand-fold larger than was heretofore possible
for qubits. With our current set-up, we have demonstrated At = 1 ps
for storing entanglement. However, this should readily be extended
to Aty = 10 s, and new trapping schemes have the potential to lead
to Aty = 1s (ref. 17). The distance scale for separating the L and R
ensembles is limited by the length [, = 2km for fibre optic attenu-
ation at our write wavelength of 852nm. Extensions to scalable
quantum networks over larger distances will require the realization of
a quantum repeater®, for which we have now laid the essential
foundation.

METHODS

Atomic ensembles and optical pulses. Each of the L and R atomic ensembles is
obtained from caesium atoms in a magneto-optical trap (MOT)'"*'. Measure-
ments are carried out in a cyclic fashion consisting first of a period of cooling and
trapping to form the MOT, followed by an interval during which the magnetic
fields for the MOT are switched off. After waiting 3 ms for the magnetic field to
decay'’, we initiate a sequence of measurement trials, where for each trial the
atoms are initially prepared in level |g). The write pulse is at 852 nm, with a
duration of 150 ns and is detuned 10 MHz below the |g) — |e) transition. The
read pulse is at 894 nm, with a duration of 130ns and is resonant with the
[s) — |e') transition. At the end of each trial, the sample is pumped back to level
|g) by illuminating the atomic cloud with trapping and repumping light for
0.7 us and 1 ps respectively, and then a new trial is initiated with period of 3 ps.
The total duration for a sequence of measurement trials is 5 ms, after which the
measurement interval is terminated and a new MOT is formed in preparation for
the next sequence of trials at a rate of 40 Hz.
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We propose a scheme to achieve quantum computation with neutral atoms whose interactions are catalyzed
by single photons. Conditional quantum gates, including an N-atom Toffoli gate and nonlocal gates on remote
atoms, are obtained through cavity-assisted photon scattering in a manner that is robust to random variation in
the atom-photon coupling rate and which does not require localization in the Lamb-Dicke regime. The domi-
nant noise in our scheme is automatically detected for each gate operation, leading to signalled errors which do
not preclude efficient quantum computation even if the error probability is close to the unity.
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Neutral atoms in optical cavities have been one of the
pioneering avenues for the implementation of quantum com-
putation and networking [ 1-4]. Nevertheless, the experimen-
tal requirements associated with these approaches turn out to
be very challenging. In particular, although significant ex-
perimental advances have been reported recently in transmit-
ting and trapping single atoms in high finesse cavities
[4-12], no experiment has yet achieved a well defined num-
ber of atoms N=2 each of which is strongly coupled to the
cavity mode, individually addressable, and localized to the
Lamb-Dicke limit, as is required for the protocol of Ref. [1].
To realize a more scalable system, Chapman et al. proposed
an architecture in which a transverse optical lattice is em-
ployed to translate atoms into and out of a high-finesse cav-
ity for entangling gate operations [6]. Transport that pre-
serves internal state coherence has been demonstrated for
both ions [13] and atoms [14]. However, although the ap-
proach of Ref. [6] does solve the problem of separate ad-
dressing of many atoms in a tiny cavity, there remain signifi-
cant obstacles to achieving Lamb-Dicke confinement [15]
and strong coupling for any scheme that has yet been pro-
posed.

To overcome these difficulties and to provide several ca-
pabilities for quantum logic, in this paper we propose a
scheme for atomic quantum gates whereby atom-atom inter-
actions are catalyzed by single photons in a fashion that is
robust to various sources of practical noise. More specifi-
cally, a controlled phase-flip gate between two atoms is
achieved by cavity-assisted scattering of a single-photon
pulse from the cavity in which the atoms are localized [16].
This gate is insensitive to uncertainties in the atom-photon
coupling rate, thereby obviating the requirement for Lamb-
Dicke localization. It is also robust to all sources of photon
loss, including, for instance, atomic spontaneous emission,
photon collection and detection inefficiency, and any vacuum
component in the scattering pulse. Such noise is automati-
cally detected for each gate, leading to a finite failure prob-
ability of the gate operation. As shown in Refs. [17,18], ef-
ficient quantum computation can nevertheless be achieved
even if the associated failure probability is close to unity.
Moreover, our scheme can be readily extended to achieve a
Toffoli gate for N atoms in a single step and to realize non-
local gates on remote atoms trapped in different cavities. The
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direct N-bit gate could lead to more efficient construction of
quantum circuits, and the nonlocal gates on remote atoms
naturally integrates local computation with quantum net-
working.

To explain the idea of the gate operation, we first consider
two atoms in a single-sided cavity. To have a scalable archi-
tecture, one can follow Ref. [6] to assume there are trans-
verse optical lattice potentials to move the target atoms into
and outside the cavity [19,20]. Each atom has three relevant
levels as shown in Fig. 1. The qubit is represented by differ-
ent hyperfine levels |0) and |1) in the ground-state manifold.
The atomic transition from |1) to an excited level |e) is reso-
nantly coupled to a cavity mode a,. The state |0) is decoupled
due to the large hyperfine splitting.

To perform a collective quantum gate on the two atoms,
we reflect a single-photon pulse from the cavity. This single-
photon pulse, with its state denoted as |p), is resonant with
the bare cavity mode a.. If the photon pulse is sufficiently
long (with its bandwidth AQ) much smaller than the cavity
decay rate k), reflection of the pulse from a resonant cavity
absent an atom will leave the pulse shape almost unchanged
but will flip its global phase, as we later characterize in de-
tail. For the case that both of the atoms are in the |0) state,
this is precisely the nature of the resonant reflection since

A B e>
4F
]
(] Clc
! Ty

Optical lattice Detection 10

FIG. 1. (Color online) (A) Schematic setup for implementation
of the controlled phase flip (CPF) gate on two atoms inside the
cavity through the photon-scattering interaction. Any pair of atoms
can be transmitted into the cavity for a collective gate operation
through a transverse optical lattice potential as suggested in Refs.
[6,21]. For a more robust implementation of the gate, we add a
single-photon detector to detect the output photon pulse as illus-
trated inside the dashed box. (B) The relevant level structure of the
atoms and the coupling configuration.

©2005 The American Physical Society
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there is negligible atom-cavity coupling and hence no shift of
the resonant frequency of the cavity mode. After reflection,
the atom-photon state |0),|0),|p) evolves into —|0)|0),|p),
where the subscripts 1, 2 denote the two intracavity atoms.
However, if either or both of the atoms are in the state |1),
the effective frequency of the dressed cavity mode will be
shifted due to the atom-cavity coupling, which is described
by the Hamiltonian

H=1 2, gle){1]a.+|1){ela)). (1)

i=1,2

If the coupling rates g;> (A€, k,y,), where 1, is the rate of
spontaneous decay of |e), then the frequency shift will have a
magnitude comparable with g;, so that the incident single-
photon pulse will be reflected by an off-resonant cavity.
Hence, both the shape and global phase will remain un-
changed for the reflected pulse. Due to this property, the
component states [0),[1)2|p), [1)1|0),|p), and [1)4[1),|p) are
likewise unaffected by reflection process. The net effect of
these two subprocesses is that the reflection of a single-
photon pulse from the cavity actually performs a controlled
phase-flip gate (CPF) U,,=exp(i7]00),,(00|) on the two at-
oms while leaving the photon state unchanged (unentangled).
Hence, in the ideal case the reflected photon can be utilized
to catalyze subsequent gate operations.

However, in a realistic setting our scheme can be per-
formed in a more robust fashion by detecting the output
pulse with a single-photon detector. By this means, gate er-
rors due to all sources of photon loss, including atomic spon-
taneous emission, cavity mirror absorption and scattering,
imperfection in the photon source, and photon collection and
detection inefficiencies, are always signaled by the absence
of a photon count. As a result, these dominant sources of
noise only lead to probabilistic signaled errors, which yield a
finite failure probability of the gate but which have no con-
tribution to the gate infidelity if the operation succeeds (i.e.,
if a photon count is registered). For this class of errors, effi-
cient quantum computation is possible with an arbitrarily
small gate success probability p [17]. Compared with deter-
ministic gates, the required extra computational overhead
due to the small gate success probability p scales efficiently
(polynomially) both with 1/p and the computational scale
characterized by the number of qubits n [17]. Because of this
robustness, the input single-photon pulse can also be re-
placed by a simple weak coherent pulse |a) with the mean
photon number |a|>< 1. This replacement does not give any
essential problem in terms of scaling, although the individual
gate efficiency (the success probability) is indeed signifi-
cantly reduced by a factor of |a/*.

Before going to the detailed theoretical characterization of
the gate fidelity and efficiency, we next present some exten-
sions of the above scheme. First, our scheme can be readily
extended to perform a Toffoli gate on N atoms in a single
time step. If one reflects a single-photon pulse from a cavity
with N atoms trapped inside, the pulse will have a flip of its
global phase if and only if all the atoms are in the |0) state.
So, this reflection performs a Toffoli gate
=exp(im|00- - -0)5.. {00+ --0|) on all the atoms while leav-
ing the photon state unentangled. This direct N-bit gate could
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FIG. 2. (Color online) Schematic of the setup for implementa-
tion of nonlocal gates on two atoms 1 and 2 trapped in distant
cavities. Not shown are circulators (e.g., Faraday devices) to redi-
rect the output beams along paths distinct from the inputs. See the
text for further explanation.

lead to more efficient construction of circuits for quantum
computation. For instance, the reflection operation in the
Grover’s search algorithm can be realized in a single step
with the N-bit Toffoli gate [21].

Second, the above scheme can also be extended to per-
form nonlocal gates on two remote atoms trapped in different
cavities, as illustrated in Fig. 2. A similar nonlocal gate was
also proposed recently in a different system with rare-earth
atoms [22]. For this purpose, one uses a single-photon (or
weak-coherent) pulse which is in an equal superposition state
(|H)+|V))/2 of the H and V polarization components. With
a polarization beam splitter (PBS1), the H and V components
of the pulse are “bounced” back from the atom-cavity system
and a mirror M, respectively, with the reflection from M
leaving the incident pulse unchanged. The overall reflection
from the cavity and the mirror M actually performs the gate
operation Uy, =exp(im|0H);,(0H|) on atom 1 and the photon
pulse p, so that there is a phase flip only when the atom is in
the state |0) and the photon is in the polarization |H) [16].
The pulse is reflected successively from the two cavity
setups, with a half-wave plate (HWP1) inserted into the op-
tical path between the two reflections which performs a
Hardmard rotation on the photon’s polarization |HY— (|H)
+|V)/\2,|V)— (|V)=|H)) /2. The photon is detected by
two single-photon detectors D1 and D2 after the reflections,
corresponding to a measurement of its polarization in the
basis (|V)=|H))/2 (after the HWP2 and the PBS3; see Fig.
2). For a detection event in D2, a phase flip operation o7 is
performed on the atom 1, while no operation is applied if D1
clicks. The net effect of these operations is the desired CPF
gate Uj,=exp(im]00),,(00|) on the two remote atoms 1, 2.
Among other applications, this nonlocal gate and its exten-
sion to multiple atom-cavity systems provide a convenient
avenue for quantum networking. As before for the case of a
single cavity, in this distributed setting any noise leading to
photon loss is always signaled by the absence of a photon
count from either D1 or D2.

We now present a more detailed theoretical model of our
scheme and characterize the influence of some practical
sources of noise. The input single-photon pulse with a nor-
malized shape function fj,(f) and a duration T can be de-
scribed by the state |p)=[1f,,(1)ai (1)dt|vac), where |vac) de-
notes the vacuum state and a (7) is the one-dimensional
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optical field operator with the commutation relation
[ain(?),al (1')]=8(t—1") [23]. The cavity mode a, is driven by
the input field a;,(¢) through the Langevin equation [23]

d, = - ila..H] - (k12)a, — kap(), ()

where « is the cavity decay rate and the Hamiltonian H is
given in Eq. (1) for the case of two atoms; generalization to
multiple atoms is straightforward. To account for atomic
spontaneous emission with a rate 7y,, we add an effective
term (—ivy,)|e)e| to the Hamiltonian H. The output field
Aoy(?) of the cavity is connected with the input through the
input-output relation a,,(f)=a;,(r) +ka,.

The final atom-photon state can be numerically solved
from the above set of equations through discretization of the
continuum optical fields (for details on the numerical
method, see Refs. [16,24]). We use the following two quan-
tities to characterize the imperfections in our scheme. (1)
Due to various sources of photon loss, photons in the cavity
may be lost with then no photon count at the detectors.
Hence, we calculate the success probability of a photon
count at the detector to characterize the efficiency of the
scheme. (2) Even if a photon emerges, there may still be
imperfections of the atomic gate mainly due to the shape
distortion of the photon pulse after reflection from the cavity,
which can be characterized through the gate fidelity. Without
loss of the photon, the final atom-photon state can be written
as |q’out>=Zi,izci1i2|i1i2>a|l?>i,i2’ where Eilizci1i2|i1i2>a(il’i2
=0,1) is the general form for the input state of the two
atoms. The output photon state |p>,-l,-2 corresponds to the
atomic component |ijiy),, and is given by |[p);;
=f gﬁﬁ;(t)aiut'(t)dﬂvac) with a shape iluilz(t). Ideally, the out-
put state W) would have the shape functions f35'(r)=
—f.,(1) and il‘}‘z(t) =f.,(t) (for i;,i,#0), which realizes a per-
fect CPF gate U;, on the atoms. Hence to characterize the
gate imperfection, we calculate the fidelity F
=|[(Wi | W )% which is directly extendable to any number
of atoms. In the following calculation of the fidelity F, we
choose the input state [(|0)+]1))/12]%N for the case of N
atoms.

The results from our calculations are summarized in Fig.
3. First, Fig. 3(a) shows the component pulse shape i}‘;tz(t)
corresponding to a Gaussian input f;,(¢) for the case of two
atoms. Only the component fgo(f) has a notable shape dis-
tortion; all others are basically indistinguishable from the
input. To account for random variation in the coupling rates
gi» we have also calculated i}‘};(t) for g; varying from 2« to
6«. The output pulse shapes are nearly identical for g; vary-
ing in this range, which is typical of current experiments
[4-10]. Figure 3(b) shows the corresponding fidelity F of the
CPF (or Toffoli) gate from the shape distortion noise with the
atom number N=2,3,4,5. The fidelity F improves with in-
crease of the pulse duration 7 since the shape distortion is
reduced for longer pulses. F' also increases with the atom
number N, which is a bit surprising but actually reasonable:
for the N-atom state [(|0)+]1))/y2]®Y, the fraction of the
component [0)*" goes down as 1/2V, and the pulse shape
distortion noise comes dominantly from this component. Be-
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FIG. 3. (Color online) (A) The shape functions |f(¢)| for the
input pulse (solid curve) and the reflected pulses with the atoms in
different component states |i,i,),. The shape function for the atom
in the state |00), is shown by the dash-dot curve. With the coupling
rate g in a typical range from 2« to 6k, the shape functions for the
atoms in all the other component states are indistinguishable from
that of the input pulse (the solid curve). We have assumed a Gauss-
ian shape for the input pulse with f,,(r) <exp[—(t—T/2)*/(T/5)],
where ¢ ranges from 0 to 7 and T=210/ « for this example. (B) The
gate fidelity versus the number of atoms with the pulse duration T
=100/ k (the dotted curve) and T=210/ (the solid curve), respec-
tively. (C) The photon loss probability Py, due to atomic spontane-
ous emission shown as a function of the coupling rate g in units of
« with the atom number N=2,3,4. The dotted curves shows Py,
calculated from the empirical formula given in the text for N=4.
(D) Comparison of the photon loss Py, for a constant coupling rate
g=3k (the solid curve) and for a time varying rate g;(f)=3«[1
+sin(vt+ ¢;)/3] (the dotted curve) for the ith atom, where v=k/6
corresponds to a typical atom’s axial oscillation frequency in the
trap, and ¢; are taken as random numbers accounting for the atoms’
random initial positions. g;(r) is chosen so that its maximum and
minimum differ by a factor of 2, which exceeds that in current
experiments [9]. Other parameters for (A) and (B) are y,=« and
g=3k, and for (C) and (D), y,=« and T=210x.

cause the component |0)®*"Y dominates the contribution to the
gate infidelity, F' is also very insensitive to variation of the
coupling rates g;. We have verified that there is no notable
change of F (8F <107*) in Fig. 3(b) for g; varying from 2«
to 6.

Any source of photon loss has no contribution to the gate
fidelity but instead influences gate efficiency (success prob-
ability). A fundamental source of photon loss is atomic spon-
taneous emission. Figure 3(c) shows the failure probability
Pg, of the gate due to this source of noise, with the noise rate
¥s=k. For N atoms with equal g;=g, the probability P, can
be well fit by an empirical formula Py~ Py,
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=30 [NU/n!(N-n)12"][1+ng*/ ky,]™". The empirical Py,
can be understood as a probability averaged over all the
Dicke-state components in the input state [(|0)+]1))/y2]*%,
with the nth Dicke-component having an effective coupling
rate \ng to the cavity mode. We have also simulated the loss
probability Py, when the coupling rates g; are different and
vary during the gate operation, for instance, as would be
caused by the atoms’ thermal motion. With some typical
choice of the relevant experimental parameters, the result is
shown in Figure 3 D, which is qualitatively similar to the
constant coupling rate case with an effective average over
|g:|. Other sources of photon loss can be similarly character-
ized. For instance, with a finite photon collection and detec-
tion efficiency 7, the success probability of each gate will be
simply reduced by a factor of 7.

In summary, we have proposed a new scheme for robust
atomic gates by way of interactions mediated by cavity-
assisted photon scattering. These gates are robust to all
sources of photon loss that are typically the dominant source
of noise in experimental implementations, and are further-
more insensitive to randomness in the coupling rates caused

PHYSICAL REVIEW A 72, 032333 (2005)

by fluctuations in atomic position. Beyond two-atom gates
illustrated in Fig. 1, our scheme can also be employed for
realization of an N-atom Toffoli gate in a single step and for
the implementation of nonlocal gates on distant atoms as in
Fig. 2. We have characterized the efficacy of our scheme
through exact numerical simulations that incorporate various
sources of experimental noise. These results demonstrate the
practicality of our scheme by way of current experimental
technology.

Note added. After submission of this work, we were in-
formed that a similar idea was also investigated by the au-
thors X.-M. Lin et al. (unpublished).
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Optimally extracting information from measurements performed on a physical system requires
an accurate model of the measurement interaction. Continuously probing the collective spin of an
Alkali atom cloud via its interaction with an off-resonant optical probe is an important example
of such a measurement where realistic modeling at the quantum level is possible using standard
techniques from atomic physics. Typically, however, tutorial descriptions of this technique have
neglected the multilevel structure of realistic atoms for the sake of simplification. In this paper
we account for the full multilevel structure of Alkali atoms and derive the irreducible form of the
polarizability Hamiltonian describing a typical dispersive quantum measurement. For a specific set
of parameters, we then show that semiclassical predictions of the theory are consistent with our
experimental observations of polarization scattering by a polarized cloud of laser-cooled Cesium
atoms. We also derive the signal-to-noise ratio under a single measurement trial and use this to
predict the rate of spin-squeezing with multilevel Alkali atoms for arbitrary detuning of the probe

beam.

PACS numbers: 03.65.Ta, 42.50.Lc, 02.30.Yy

I. INTRODUCTION

Information gained by performing measurements on a
quantum system can reduce uncertainty about one or
more of its physical observables. It is, however, a basic
property of quantum mechanics that measurements are
invasive in the sense that they necessarily degrade one’s
ability to make subsequent predictions about the values
of complementary observables [1]. This type of distur-
bance is often called measurement backaction, and it is
a natural consequence of the Hamiltonian coupling be-
tween a probe (such as an electromagnetic field mode)
and the system of interest. In a special class of “back-
action evading” experimental scenarios, it is possible to
channel the disturbance into observables that are not
dynamically coupled to the main quantities of interest.
When such measurements are performed with minimal
technical imperfection on systems whose initial prepara-
tions are sufficiently pure, which qualifies them as what is
referred to in the quantum optics literature as quantum
non-demolition (QND) measurement [2, 3], it is possible
to create conditionally squeezed states of the measured
observable.

While measurement-induced squeezing can easily be
understood in an abstract sense, predicting the precise
degree of squeezing that can be achieved in a realistic
experiment requires detailed physical modeling of the
system-probe interaction (in addition to any operative
decoherence mechanisms). Squeezed states of atomic
spins have recently emerged [4-7] as a versatile and ro-
bust resource for quantum information science [8, 9] and
quantum metrology [10-14]. In these contexts, the de-
gree of spin squeezing is directly linked to entanglement

*Electronic address: jks@caltech.edu

measures, to achievable reductions in averaging times for
precision measurement, and to achievable improvements
over communication protocols that utilize only classical
information resources.

Theoretical analyses of measurement-induced spin
squeezing typically consider a system of N > 1 atoms
whose collective spin is described by an observable

N
F=> Of (1)

i=1

where Wf = ... @1, @ f ® 1,41 ® - - - is the angular
momentum (vector) operator for the ith atom. Carte-
sian components F’m, F’y and Fz follow from this in an
obvious way. Under physical conditions that preserve
permutation symmetry of the label 7, the collective spin
of an initially polarized atomic sample can be restricted
[15] to its maximum angular momentum shell. The
associated Hilbert sub-space is spanned by eigenstates
|F, M) of the collective spin observable F that satisfy
F2|F, M) = h?F(F +1)|F, M), where F = N f for atoms
with individual spin f.

It is natural to conceptualize the quantum state of
such a system as a Bloch-like magnetization vector F =

(A) B) LAY eeedsiae
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FIG. 1: (A) Graphical representation of the spin-polarized
atomic sample as a classical magnetization vector with trans-
verse quantum uncertainty. (B) Schematic of the transverse
quantum uncertainties for coherent and squeezed spin states.
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FIG. 2: Schematic of an experimental apparatus for continu-
ous measurement of collective spin in an Alkali atom sample
based on polarimetric detection of a forward scattered probe
laser. Information gained from the measurement can be used
to achieve conditional spin squeezing.
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sociated with the variances of Fy, F, and F (sce Fig. 1).
The transverse uncertainty AF | can never vanish since
F,, F, and F, do not commute; this constraint can be in-
terpreted to mean that we can never have perfect knowl-
edge of the orientation of the collective magnetization.

Conditional spin-squeezing experiments operate on the
principle that weakly measuring F, gradually reduces
its uncertainty below that of the initially-prepared spin
state. A typical apparatus for such procedures is depicted
in Fig. 2. Continuous measurement of F, is implemented
by passing a linearly polarized probe laser through an
atomic sample prepared in an initial (approximate) co-
herent state [16] by optical pumping [17]. Qualitatively
speaking, the atoms rotate (via state-dependent optical
activity) the probe polarization by an amount propor-
tional to F, [18]. In a quantum analysis the atoms and
optical probe field evolve into an entangled state [19] as
the result of this scattering interaction. Detection of the
scattered probe field then yields information about F,
via these correlations [20-24].

The interpretation of existing squeezing experiments
has (at least implicitly) assumed that polarimetric detec-
tion of the forward scattered probe laser yields a detector
photocurrent,

yedt = V' MF,dt + dW,. (2)

Here M is a constant (known as the measurement
strength) that describes the rate at which photodetec-
tion provides information about F,. The dW; are noise
increments which exhibit Gaussian white noise statistics
E[dW;] = 0 and dW}? = dt [25].

The measurement strength, M, is the key parame-
ter for predicting the degree of squeezing that can be
achieved as a result of the measurement. It is thus im-
portant to determine M in terms of physical properties
of the atomic sample and optical probe. While the form
of Eq. (2) has been derived in previous analyses [20-25],
this has generally been done relative to a simplifying as-
sumption that the atoms behave qualitatively as spin—%
particles. But measurement-induced spin squeezing ex-
periments have utilized Alkali atoms with higher spin
[5, 7, 26], and recent data show that the deviation from

spin-3 behavior can be significant [27]. While nonlinear-
ities in the atom-probe scattering process are not always
bad (proposals for capitalizing on these effects for quan-
tum state tomography are being explored [28]), they do
raise complications for spin-squeezing experiments by in-
validating the form of Eq. (2).

We find that the photocurrent in Eq. (2) can be re-
covered even for higher-spin atoms by suppressing ten-
sor scattering interactions via a properly chosen exper-
imental geometry. Using standard techniques [29, 30]
to address the atom-probe scattering physics, combined
with a semiclassical treatment of the atomic magnetiza-
tion vector, we derive an expression for the measurement
strength, M, in terms of characteristic experimental pa-
rameters. This allows us to obtain an expression for the
photocurrent in terms of the duration of the measure-
ment and the properties of the atomic system and the
probe laser. We observe close agreement between our
scattering model and data obtained using an apparatus
of the type in Fig. 2.

Finally, we derive an expression for the signal-to-noise
ratio of the measurement photocurrent which can be used
to calculate the rate of spin-squeezing in experiments of
the form shown in Fig. 2. The results we obtain are
valid in the short-measurement limit in which atomic de-
coherence due to scattering probe light in unobserved
(non-paraxial) electromagnetic field modes [31] can be
safely ignored. Current spin-squeezing experiments all
fall into this regime where the degree of quantum un-
certainty reduction is small compared to the Heisenberg
spin-squeezing limit [4].

II. CONTINUOUS MEASUREMENT AND THE
MULTILEVEL ATOM-PROBE HAMILTONIAN

We begin by considering the experiment depicted in
the schematic of Fig. 2. An off-resonant linearly polarized
probe beam is sent through a cloud of cold spin-polarized
atoms. The forward scattered polarization state of the
light is then detected using a polarimeter, consisting of
polarization shifting waveplates, a polarizing beam split-
ter, and two detectors..

In general, it is a rather complicated problem to pre-
dict the output polarization state of the probe beam af-
ter it has passed through the spatially extended atom
cloud. We can simplify the problem to one dimension by
assuming that the beam is predominantly forward scat-
tered due to the coherent re-radiation from a large num-
ber of atoms. This approximation can be extracted from
a full three-dimensional model of the diffraction as con-
sidered in references [32-34]. Under this assumption, we
only consider paraxial modes of the beam. Neglecting
non-paraxial modes prevents us from computing the de-
coherence rate of the atomic magnetization, but it does
not limit our ability to analyze the dynamics in the small-
decoherence (short measurement time) limit.

Even in the one-dimensional problem, the depth of the



atomic cloud along the probe direction introduces further
complications. To simplify further, we assume that the
overall optical density of the cloud is small enough that
the total rotation of the optical polarization state due to
the atoms is small. This allows us to neglect propagation
effects by which the atoms in the front edge of the cloud
would see a substantially different input state than the
back edge of the cloud. These effects lead to complicated
multi-mode dynamics which are considered (along with
the tensor polarizability) in [26].

Under these approximations, we approach the simpli-
fied scattering problem as follows. The probe beam con-
sists of two orthogonal polarizations and, for each polar-
ization component, the continuous beam is divided into a
series of distinct spatial traveling-wave modes, each with
a length equal to the depth of the atomic cloud, L. Thus
each atom interacts with a pair of orthogonal polariza-
tion modes with the same spatial profile for a length of
time dt = L/c. This approach clearly avoids propagation
effects by allowing all of the atoms to interact with the
same modes simultaneously. After the two polarization
modes corresponding to one time-slice have interacted
with the cloud for the discrete time 6t , those two modes
are detected with the polarimeter, a new time-slice begins
to interact with the cloud, and the process is repeated,
leading to a continuous measurement. More detailed ap-
proaches to continuous measurement with discrete modes
can be found in references [24, 35].

Now we define the electric-field and polarization oper-
ators associated with each of these optical modes before
considering the Hamiltonian interaction of probe beam
with a single multilevel atom. This procedure is discussed
with more detail in Appendix A.

A. Probe Field Polarization States

For each traveling-wave spatial mode, we consider the
field operators

BO) = \/hg [aler +aley] (3)
and

B = \/hg [a,é; + &+é’+] , (4)
where a' and a_ are Heisenberg-picture creation and

annihilation operators for the z-axis propagating mode
with left circular polarization and dﬂ_ and a, are the
creation and annihilation operators for right circular
polarization. Each field operator implicitly refers to a
single traveling mode as discussed above, and we neglect
to provide indices for the modes unless they are required
for clarity. The coefficient g = wo/(269V) is a form
factor, V will be taken to be the volume of the atomic
cloud, and €_ and €, are the (complex) spherical basis
vectors for left and right helicity.

In the expansion of the polarizability Hamiltonian we
get terms which can be recast as Schwinger boson oper-
ators

. 1
So = 5 (ala, +ala) (5)
. 1
S = 5 (ala_+ala,)
1
D) (A;ay - djch)
8, = 3 (ala, —ala_)
1
= 5 (é\l;/ay/ - &;I;/ &xl)
: Lo o
S, = 3 (ctJra+ — afaf)

These operators obey the usual angular momentum com-
mutation relations and the components form a basis for
the Stokes vector which is used to represent the polariza-
tion state of the light. The quantity 5‘0 is proportional to
the number of photons interacting with the atomic sys-
tem in one time increment. On any given measurement,
the quantity S’O and a single component of the Stokes
vector representing the polarization state (e.g., gx) can
be measured with an appropriate selection of polarization
rotating waveplates situated after the atoms and prior to
the polarizing beam-splitter. In the usual configuration
(of Fig. (2)), S is measured without any waveplates, S,
is measured with a half-waveplate that rotates the lin-
ear polarization by 45-degrees, and S, is measured by
adding a quarter-waveplate that completely circularizes
linear polarized light.

In the case where a full quantum mechanical descrip-
tion is used, this choice of basis will change the nature of
the information gained from the measurement which is
then used to update the conditional collective quantum
state describing the atoms. In other words, the choice of
basis will lead to a different unravelling of the conditional
dynamics.

B. Scattering Hamiltonian

We now introduce the polarizability Hamiltonian that
determines the joint evolution of the single-atom spin
and the polarization of the traveling-wave optical mode.
Subsequently, we summarize the results from Appendix
A where we derive a more convenient and intuitive way
of representing the irreducible components of the Hamil-
tonian in terms of atomic spin operators instead of dipole
operators.

For a field which is off-resonant to the transition of
interest, the usual dipole Hamiltonian can be approxi-
mated and recast into a polarizability form. This can be
derived, for example, by using adiabatic elimination un-
der the assumption that the off-resonant field only weakly
populates the excited states. The polarizability Hamil-



tonian [17, 30, 36] is then expressed as

X7 C hApy

(6)

where we omit indices identifying the particular atom
and spatial optical mode being considered. This defini-
tion consists of several terms which are also defined in
Appendix A. The negative and positive frequency probe
field operators, E(-) and E() describe the creation and
annihilation of photons in the contributing probe modes.
The atomic operators di and d are the vector dipole
raising and lowering operators. The ground and excited
state angular momentum numbers are give by f and f’
respectively. The probe detuning, Af s = w — wy ¢/,
is defined as the difference between the probe frequency
w and a particular atomic resonance frequency. For the
purposes of this paper we consider all of the population to
remain in one ground state manifold (f = 4 for Cesium,
ignoring f = 3) and sum only over the excited states
(f' =2,3,4,5). The operators ]5f and Pf/ are projectors
onto the ground and excited states respectively.

This Hamiltonian has a satisfying physical interpreta-
tion as a scattering interaction: the atom is first brought
from its ground state to a virtual excited state via the
raising operator, df , by annihilating a photon from the
probe field through E(+). Then, the temporarily excited
atom returns to a (potentially different) ground state by
emitting a photon into a (potentially different) scattered
probe mode via d and E(-),

The central operator in the scattering Hamiltonian,

a0 = PpdPpdl Py, (7)
commonly called the atomic polarizability tensor, is a
dyad involving vector operators [29]. Thus &y s is a
rank-2 spherical tensor that can be decomposed into ir-
reducible components,
dfyf/ = dgc 1 + d(fl;/ + af fr (8)
The scattering Hamiltonian similarly decomposes into ir-
reducible spherical tensor operators,

H=H9+1Y+H® (9)

where
A (J)

])_ E ff'

CBO, (10)

The H© is a scalar contribution, H® transforms as a
vector, and H®) transforms as a rank-2 symmetric tensor
in the group representation theory of SO(3). Were the
atomic system composed of spin—% particles, it would be
possible to neglect the rank-2 Hamiltonian [30] (as will
become explicit), however, we can not do so for higher-
spin Alkali atoms [26, 27, 37].

The full Hamiltonian for the collective atomic spin re-
sulting from N atoms is obtained by taking the symmet-
ric sum of these single particle operators.

C. Hamiltonian Decomposition

Now we recast the single atom Hamiltonian of Egs.
(9, 10) into irreducible terms involving only atomic spin
operators fz and probe polarization operators ,SA'l then dis-
cuss each component in physical terms. The derivation
of these expressions is sketched in Appendix A.

1. The Scalar Hamiltonian

The scalar scattering Hamiltonian, H (©) can be repre-
sented as a product of operators on the separate atomic
and probe field Hilbert spaces. This is accomplished
by combining the expressions for the field mode oper-
ators, Egs. (3) and (4), with the rank-0 irreducible com-
ponent of the atomic polarizability tensor. Evaluating
this Hamiltonian using the form of the rank-0 atomic
polarizability derived in Appendix A leads to the scalar
scattering Hamiltonian,

. a ,2A i
o) _ ff
H = E Aff/3 So f (11)

where the constants oz(ozc,, defined in equation (A28) of
the appendix, are related to the transition dipole matrix
elements for the atomic hyperfine transitions.

This rank-0 Hamiltonian couples the atomic identity
operator 1 5 to the field mode number operator and
can be interpreted as an atomic state-independent light
shift. It therefore affects both polarization modes of the
probe field in an equivalent manner and will not influence
the measurement process since it does not provide any
state-dependent information. However, this Hamiltonian
would be important if the measurement was meant to
distinguish between populations across hyperfine states
(e.g. f =3 and f = 4 using homodyne detection) instead
of across the sub-level populations within one hyperfine
state (using polarimetry, as discussed here). This term is
also of importance if the Hamiltonian is being considered
as a spatially dependent potential for the atoms (e.g., in
an optical lattice).

2. The Vector Hamiltonian

The vector contribution to the atom-probe scattering
Hamiltonian, can be evaluated in a similar manner using
expressions for the rank-1 polarizability derived in the
appendix,

Qr ey A
(”=gz:ff (12)

Here, the vector polarizability constant, a&l}/, is given by

Eq. (A29), fz is the z-component of the (single-particle)
atomic spin angular momentum.



The rank-1 Hamiltonian can be interpreted as causing
a differential phase shift on the two circular polariza-
tion modes by an amount that is proportional to the
z-component of the atomic angular momentum. Thus
the vector Hamiltonian leads to optical activity in the
atomic sample and produces the familiar Faraday rota-
tion effect often used to address continuous measurement
of collective spin [18, 20, 22-24].

8. The Tensor Hamiltonian

Finally the tensor Hamiltonian, can be evaluated using
expressions for the rank-2 polarizability derived in the
appendix to give,

o2
; ’; (Sx (2 -12) (13)
8, (Ffy + 1)

+ 8 (3f2 —1(F+ 1) /3).

Ao = g

Here, the tensor polarizability constant, a?},, is given

by Eq. (A30).

The rank-2 Hamiltonian couples spin coordinates to
the elliptical components of the probe laser field and
produces a second-order light shift proportional to the
atomic quadrupole moment. These terms vanish for
f = 1/2 (as can be seen by evaluating the operators
within the parentheses above) but are non-zero for any
higher spin number. For a linearly polarized input beam,
the tensor term leads to an elliptically polarized scattered
probe field [26, 29]. The rank-2 interaction potentially
limits the validity of any analysis of a continuous mea-
surement of collective atomic spin in Alkali atoms based
on the qualitative behavior of spin—% particles.

D. Semiclassical Evolution of Probe State

We can greatly simplify the dynamics by eliminating
atomic evolution due to the probe beam and only consid-
ering the evolution of the probe beam due to the atomic
state. Under this semiclassical approximation, we replace
all atomic operators with their expectation values with
respect to an assumed fixed spin state. (This is the op-
posite of the semiclassical situation often considered in
atom-light interactions where the atomic system is con-
sidered quantum mechanically while the optical beam is
made classical.) For a large ensemble of atoms and small
interaction times, fixing the atomic state will accurately
reproduce the mean behavior of the measured photocur-
rent corresponding to one of the Stokes vector compo-
nents. This is confirmed experimentally in the next sec-
tion, where the atomic state is fixed and adiabatically

z
Atomic
Magnetization
Vector

FIG. 3: Definition of the spherical coordinate angles used to
describe the orientation of the collective atomic magnetization
vector, F, relative to the fixed laboratory cartesian coordinate
system. The polarization vector of the input probe light re-
sides in the zy-plane and forms an angle, ¢,, with respect to
the laboratory z-axis.

positioned with a magnetic holding field. The holding
field serves to both position the atomic state and protect
it from the influence of the probe light, such that the
analysis of this section remains valid even for long inter-
action times or large optical depth clouds. Ultimately,
however, probe induced decoherence will dominate all in-
teractions. In the final section, we then reconsider the full
analysis including the atomic quantum noise (related to
spin squeezing) for a particular alignment of the collec-
tive spin state. .

We approximate the N-atom Hamiltonian, Hy, by re-
placing the single-atom operators with their expectation
value taken with respect to an optically pumped spin
pointing with direction # and ¢ given in spherical coor-
dinates (Fig. 3). In other words, for an individual atom

operator Oy, we take
Op = (Of) = (V(0,0)|Of W (0. 9))  (14)

where [U(0, ) = exp[~if.g] exp[~if,f]|f. f)..
The relevant operators from the Hamiltonian decom-
position are given by

(f.) = fcosb (15)

(2 —F3) = J(f —1/2)sin’hcos2p  (16)

(fofy = Fof) = f(f=1/2)sin*Osin2p  (17)
Within the semiclassical approximation, we obtain an ef-
fective scattering interaction Hamiltonian that only in-
volves operators on the probe field Hilbert space. Ignor-

ing all terms proportional to So (because it commutes
with each term of the semiclassical Hamiltonian) we have

7y (O 10

= (725% + 7Sy +725,) (18)

n
5t

which leads to a rotation of the Stokes vector S about a
vector ¥ = [Yz, 7Yy, V=] according to the evolution operator



~ ~ 0t
Us, = exp {—th}
= eXp |:_/L(’)/XSX + ’Yy‘gy + ,YZ‘SAYZ ):| (19)
where §t = L/c is the interaction (transit) time of the dis-

crete spatial modes of the probe beam across the atomic
cloud of length L. The rotation vector 7 is defined by

o'?

r = f—=1/2 sin” f cos 2 20
Yo = wf(f—1/2) @ZQOA”, (20)
a'?
= f—1/2 2 21
W = wf(f—1/2)sin® Osin w;aoA”/ (21)
(1)/
v, = Vofcosez s il (22)
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Here we have normalized by the state-independent polar-
izability constant (see Appendix A)

360hr>\8
= — 2
a0 82 (23)
ann]? (25 +1)
= d ! —_——

such that o f f /ao is dimensionless. ~ The rotation

strength is represented by

- Ng(StOéo
Yo = 3

where we have used the field coefficient g = wo/(2¢0V),
the atomic resonance frequency wg, and the interaction
volume (the volume of the atomic sample) V = AL.

From an experimental standpoint, it is useful to note
that g is directly related to the on-resonance optical
depth OD of the atomic sample and the decay rate I’
via,

Yo = <£) OD (24)

where

OD = N— = .
A’ 70 2T

(25)
The quantity, gg, is the resonant atomic scattering cross
section and A = 7r? is the cross-sectional area of the
atomic sample.

_ In Appendix B , the equations for a general rotation of
S about 74 are given. Here we specialize to the case where
the input beam is linearly polarized in the x-direction
such that (Sy) = (S.) = 0. The output expectation

values are then given by

2

(81 = (80} (cosr+ 51— cos) ) (26)
(81) = (80 (- Loy + 2950 - con)
(81) = (82) (Zsiny + 2321 - cos))

Taking the total rotation angle small (y < 1) this be-
comes (to second order in =)

(81 & (8) (1=12/2-12/2) (27)
(Sp) ~ (8) (=7 + 82) (28)
(81 ~ (52 (w + 2) (29)

In this semiclassical approximation, we have com-
pletely neglected any evolution of the atomic state due
to the probe beam. We demonstrate in the next section
that the above model agrees well with experimental data
when the spin state is fixed with a magnetic holding field.

III. EXPERIMENTAL RESULTS

In this section, we show that the model described above
is consistent with representative data collected from our
experiment with laser cooled Cs atoms and balanced po-
larimetric detection of a forward-scattered, off-resonant
probe laser field.

A. Experimental Apparatus

Figure 4 provides a schematic of the major compo-
nents of the experimental apparatus. Our single-particle
Alkali atom spin system is the 62S; /2(f=4) ground state
hyperfine manifold in '33Cs with 4h of intrinsic angular
momentum due to a combination of the ¢ = 7/2 nuclear
spin and the s = 1/2 spin of an unpaired 6s valence elec-
tron. We obtain cold atom samples from a 10~% Torr
background Cs vapor using standard laser cooling and
trapping techniques by collecting more than 10° atoms
in a magneto-optic trap (MOT). Trapping beams are de-
rived from a 150 mW injection-locked diode laser tuned
(11-15) MHz red of the Cs 62S;/o(f=4)—6P3/5(f'=5)
cycling transition. FEach 35 mW trapping beam has
an approximately constant intensity profile and a 2.5
cm diameter. A 10 mW repump laser tuned to the
6251 2(f=3)—6°P35(f'=4) transition is used to prevent
atomic population from decaying out of the trapping cy-
cling transition.

Following the atom collection phase, the sample is sub-
Doppler cooled [38] to a temperature of T~ 10 uK and
the initial z-polarized spin state is prepared with a cir-
cularly polarized 100 yW optical pumping beam (pulsed
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FIG. 4: Schematic of our experimental apparatus in which collective spin angular momentum of a cloud of laser cooled Cs
atoms is measured by polarimetric detection of a scattered off-resonant probe laser. Ambient magnetic field fluctuations are
supressed by magnetic shielding and can be monitored with a fluxgate magnetometer (FG) situated nearby the atomic sample.
Components not shown include the optical pumping laser (aligned along the laboratory z-axis) and external trim coils used to

zero ambient magnetic fields and their first order gradients.

for 2-4 ms) propagating along the z-axis and tuned to
the (f=4)—(f'=4) hyperfine transition. A 100 mG mag-
netic holding field is applied along the laboratory z-axis
to define the optical pumping direction.

Continuous measurement of the polarized atomic en-
semble is implemented with a nearly quantum shotnoise-
limited probe laser that can be detuned from the
6251 /2(f=4)—6?P35(f'=5) Cs transition over a range
A = £+1.4 GHz. The probe beam is linearly polarized by
a high extinction Glan-Thompson prism prior to pass-
ing through the cold atom cloud, and the orientation of
the linear polarization vector with respect to the labora-
tory coordinate system may be rotated via an input half-
waveplate. The scattered probe field is detected with a
polarimeter constructed from a Glan-Thompson polariz-
ing beam splitter and a DC-balanced photodetector with
>1 MHz measurement bandwidth.

A computer controls the experiment timing and
records the polarimeter output as well as diagnostic in-
formation including background magnetic field fluctu-
ations (measured with a flux-gate magnetometer) and
atom number (measured by fluorescence imaging). The
computer enables/disables the measurement by control-
ling a shutter on the probe laser, constructed from a
switched acousto-optic modulator, with 100 ns resolu-
tion. Magnetic fields with magnitudes up to ~ 0.5 G can
be applied in arbitrary (time-dependent) directions by
driving 3 pairs of computer-controlled Helmholtz coils,
oriented along the laboratory z-, y-, and z-axes, with a
bandwidth of ~ 1 MHz.

Background magnetic field fluctuations are suppressed
through a combination of passive p-metal shielding and
field cancellation via external trim coils. Each atom
preparation (trapping, cooling and optical pumping) and
measurement cycle is synchronized with respect to the
60-Hz building power lines to suppress the effects of in-
duced magnetic fields. Slow magnetic drift due to natural
and anthropogenic sources are cancelled by adjusting the
external trim coils based on the output of the fluxgate

magnetometer.

B. Verification of the Probe Scattering Model

Our model of the scattered probe polarization as a
function of the orientation of the atomic magnetiza-
tion vector was compared against experiment by observ-
ing the polarimeter photocurrent as the orientation of
the atomic polarization was varied according to differ-
ent specified paths in the laboratory coordinate system.
This was accomplished as follows. An z-polarized cold
atom sample was prepared according to the description
above and an z-axis magnetic holding field of 100 mG
was applied. At this point, the probe shutter was opened
and the balanced polarimeter photocurrent was moni-
tored while the orientation of the magnetic holding field
was varied according to the specified path. The rate of
change of the holding field orientation was chosen to be
slow (ms) compared to the atomic Larmor precession fre-
quency (hundreds of kHz) such that the atomic magne-
tization vector adiabatically followed the path traced by
the holding field. Furthermore the holding field was large
enough to dominate the probe light induced dynamics at
short times, but not so strong as to shift the levels sig-
nificantly compared to the detuning.

With a strong enough holding field, the spin state (and
hence the semiclassical rotation vector ¥) will be fixed
across the spatially extended cloud. Because rotations of
the Stokes vector about the same vector will commute,
the semiclassical analysis of the previous section will be
valid for even large optical depth samples where the total
optical polarization rotation is significant.

This process was performed for two different adiabatic
paths on the atomic Bloch sphere:

e zz-Plane Rotation: the atomic magnetization
follows a path beginning along the x-axis and ro-
tates around the y-axis: § = 7/2 — —x/2 with
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FIG. 5: Comparison of our model of continuous measurement with photocurrents obtained from from the experiment with
N =1 x 10° Cs atoms in an r = 4 mm spherical trap and a P = 10 W probe field blue-detuned from the (f=4)—(f'=5) D
hyperfine transition (Ao = 852 nm). Each trajectory is averaged 10 times. (A) For an input probe beam with x-polarization
and a detuning of 150 MHz, Sy and S, were measured for both the zz and xy trajectories (described in the text) resulting in the
solid curves. All trajectory times are 7 = 2 ms, during which we observe some atomic decoherence which causes the prediction
(dotted curves) to stray from the data. (B) As a function of probe detuning, we plot the peak of the S, measurement (for the
xz trajectory) which depends only on rank-1 terms and the peak of the S, measurement (for the zy trajectory) which depends
only on rank-2 terms. The predicted behavior (solid curves) shows good agreement with the data out to large detunings where

the curves asymptote to the 1/A and 1/ A? lines provided to guide the eye.

fixed ¢ = 0.

e zy-Plane Rotation: the atomic magnetization
follows a path beginning along the z-axis and ro-
tates around the z-axis: ¢ = 0 — 7 with fixed
0 =m/2.

We chose these two trajectories because they highlight
the different contributions from the rank-1 and rank-2
scattering interactions, as seen from Egs. (20, 21, 22).
The zz-plane trajectory, where ¢ = 0, virtually elim-
inates the rank-2 tensor contribution to the photocur-
rent leaving nearly ideal Faraday rotation. Conversely,
the xy-plane rotation eliminates rank-1 contributions and
produces elliptical scattered probe polarizations.

1. Measuring the Scattering Probe Stokes Vector

Fig. 5A compares the measured polarimeter photocur-
rents (solid curves) for these two adiabatic trajectories
with those predicted by our atom-field scattering model
(dotted curves). The input state was polarized in the x
direction and because the total polarization rotation an-
gle induced by the atoms v was small, we measured only
the other two components S and S, with the appropri-
ate arrangement of waveplates prior to the polarimeter.
For measuring S, a single half-waveplate is placed prior

Y
to the polarizing beamsplitter (PBS) to rotate the polar-

ization by 45 degrees, and for S’Z a quarter-waveplate is
used to circularize the initial linearly polarized light.

We now refer to Eq. (28) and Eq. (29) to explain the
observed trajectories. For the xz trajectory, we have
Yy = 0 such that S, contains a large linear term in -,
but S’Z only contains terms quadratic in . Thus, for this
path, the measurement of S leads to the top curve in
Fig. 5A which is proportional to the rank-1 polarizabil-
ity, while the measurement of S, is much smaller and
effectively zero. For the zy trajectory, we have 7, = 0
such that S, contains a large linear term in ~y, but .S, only
contains terms quadratic in . Thus, for this path, the
measurement of S, leads to the middle curve in Fig. 5A
which is proportional to the rank-2 polarizability, while
the measurement of S, is much smaller and effectively
zero. The doubling of frequency between the two domi-
nant curves is a direct consequence of the tensor nature
of the rank-2 term.

Note that there is some structure expected in the two
curves (quadratic in «) which are approximately zero,
but these are more polluted by technical noise and do
not reveal any essentially new information about the in-
teraction. For the larger curves (linear in ), deviations
of the measured photocurrents relative to the predicted
values seen in Fig. 5A result mainly from the fact that
the model does not consider the probe-induced damping.

The predicted curves use values for the atom number,
trap volume, probe power and detuning consistent with
independent characterizations of those parameters. The
atom number and trap volume were obtained from fluo-
rescence detection of the MOT and a CCD image of the
atom cloud, and the resulting values, N = 1 x 10° and



r = 4 mm, correspond to an optical depth, OD ~ 7,
which is consistent with absorption measurements that
we performed. Given our uncertainty in measuring the
number of atoms, it can be inferred that our optical
pumping efficiency in these (relatively) optically thin
atomic samples is no less than 85% (but is more likely
>90%) [16].

2. Relative Scaling of the Scattering Terms with Probe
Detuning

As further verification of our scattering model, we in-
vestigated the scaling of the rank-1 and rank-2 contri-
butions to the polarimeter photocurrent as a function of
the probe detuning. With reference to Fig. ( 5A), the
magnitude of the vector and tensor scattering interac-
tions were measured from the peak amplitude of the S
measurement (for the zz plane rotation) and the ampli-
tude of the SZ measurement (for the xy-plane rotation)
respectively. This plot compares these measured signal
amplitudes (stars) with those predicted by our scatter-
ing model (solid curves) for detunings (with respect to
the (f=4)—(f'=>5) hyperfine transition) ranging from 150
MHz to 1.05 GHz.

The fact that multiple excited state hyperfine levels
participate in the scattering interaction is evident from
scalings which are not constant in A=! or A™2. As sup-
ported by our full model of the scattering interaction, we
observe no qualitative difference in the continuous mea-
surement for probe detunings smaller than the hyperfine
splittings. This suggests that conditional spin-squeezing
experiments can be performed with small detunings pro-
vided that the probe intensity is weak enough that the
small decoherence requirement is satisfied.

IV. SPIN-SQUEEZING WITH MULTILEVEL
ATOMS

Until this point we have considered only the semiclas-
sical evolution of the optical probe beam due to an en-
semble of atoms with a fixed atomic spin state. Now
we consider a different experimental scenario appropri-
ate for preparing conditional spin-squeezed states of the
atomic ensemble. As opposed to the previous situation,
we remove the adiabatic holding field which makes spin-
squeezing impossible as it will cause undesired mixing of
the squeezed and anti-squeezed components perpendic-
ular to the mean spin. Although the holding field may
serve to validate the previous semiclassical analysis for
longer times by eliminating the probe-induced evolution
of the atomic state, this analysis is still valid for small
times and weak interactions without a holding field. Thus
our goal is to derive the small time signal-to-noise ratio
by deriving the signal strength from the previous section
and comparing this to the optical shotnoise. We then use
the signal-to-noise ratio to predict the rate of squeezing

in a typical experimental configuration where the tensor
terms can be ignored.

Considering only the relatively low optical density
limit, the measurement of Sy, will result in Eq. (28). Now
we wish to re-write this equation in the form of Eq. (2)
including measurement noise. It is readily shown that
all terms not linear in F, vanish in Eq. (28) provided
that & = 7/2 and ¢ = 0. That is, a pure Faraday ro-
tation Hamiltonian is recovered when the atomic mag-
netization vector is oriented along the z-axis. However,
rotating F' in the zy-plane results in elliptically polar-
ized scattered probe light, and moving out of this plane
results in nonlinear atomic dephasing due to scattering
terms which are quadratic in the single-particle spin op-
erators, fz. These adverse effects are avoided for the
experimental geometry where F is collinear with the z-
axis. Fortunately, spin-squeezing experiments are easily
operated under such conditions [7].

Taking the input probe field to be in an z-polarized
optical coherent state, and considering the small v limit,
Equation (28) leads to a semiclassical photocurrent (with
units of optical power) of the form,

Yt = 77\/§Fz + \/?]Ctv (30)

where we have made the substitution, AN f cosd — F,
(refer to Eq. (15)), and included the photodetector quan-
tum efficiency, . Note that we have introduced ¢(; which
represents optical shotnoise. We have also introduced a
constant, S, the scattering strength,

(1)

1 I AL
= |I - E : 1
g 2 roo <4> Iz O‘OAfyf/ 7 (3 )

that depends up the probe intensity, I, = P/A, deter-
mined by the coherent state amplitude, P = 2hw|3|? and
cross-sectional area, A = 772 (for a mode-matched probe
laser). It is useful to note that the scattering strength
has units of W2/h? (power squared per h%) and charac-
terizes the degree of coupling between the atoms and the
probe field; v/S quantifies the polarimeter optical power
imbalance per unit spin (as F, has units of &).

Our expressions are similar to previous results [21, 24,
39] in that it appears as a Faraday rotation signal. How-
ever, our specific expressions for vy, 7y and v, account
for the detailed hyperfine structure of the atomic excited
states, including the fact that the oscillator strengths and
signs of the contributions from different participating ex-
cited states are not equal, and doing so is required for
quantitative agreement between theory and experiment.

To arrive at an expression for the measurement
strength, M, as defined in Eq. (2), we must consider the
variance, A¢?, of the white noise increments ¢;. For an
optical coherent state [40, 41], this noise variance is given
by the familiar optical shotnoise expression,

AC? = E[(f] = 2hwP, (32)



which has units of W2 /Hz (power squared per frequency).
Comparing the semiclassical photocurrent of Eq. (30) to
the photocurrent of Eq. (2), the measurement strength is
seen to be given by the ratio

S 1 gp
- e ()
ACZ 2m2’s \A (33)
where we have defined the reciprocal scattering time as
2
(1)
Io T (07 ’
-1 0 If
== —_— 34
Ty Fiw 4 ; aOAf’f’ ) ( )

which is essentially the rate that probe photons are scat-
tered by the atomic system. This expression is similar to
that derived in Ref. [18].

Now consider a measurement of F, by Eq. (2). In the
small time limit where probe induced decoherence can
be neglected, the full quantum filter describing this mea-
surement is equivalent a classical model in which F, is
simply a random constant on every trial drawn from a
distribution with variance equal to the quantum vari-
ance of (AF2?)y [42]. Then the generally complicated
full quantum filter [25] is equivalent to linear regression,
or fitting a constant to the noisy measurement record in
real time. In essence, the optimal filter serves to average
away the optical shotnoise to reveal the underlying value
of F,. Under these statistical assumptions, at small times
the quantum uncertainty is given by

2
<AFz2>‘r = <AFZ >0 :

1+ n(AF2 oMt
This can be shown either with the full quantum filter
or by using the equivalent classical model combined with
Bayesian estimation (from which a Kalman filter or linear
regression can be derived).

These concepts are illustrated by the simulated mea-
surement trajectory in Fig. 6. The plot begins with the
probe laser turned off, during which all necessary state
preparation of the atomic system such as atom trapping,
cooling and optical pumping into an z-polarized coher-
ent spin state is performed. Once the probe light is en-
abled at t = 0, the photocurrent acquires a mean offset,
nV/'SF,, proportional to the spin measurement outcome,
F,, but this mean value is masked by photocurrent noise.
At short times, the signal is overwhelmed by local statis-
tical fluctuations; however, averaging the photocurrent
suppresses the uncertainty in the mean signal by inte-
grating away the white noise, illustrated by the dotted
lines in Fig. 6.

If we define the signal to noise ratio as

SNR? = n(AF2)oMT (36)

we can then express the degree of squeezing (ignoring
decay of the Fy) as

(35)

_ (AF7),
V= B,
1
T I SNR? 37
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FIG. 6: Simulated photocurrent (n = 1) for a continuous
measurement of atomic spin angular momentum via balanced
polarimetry. At the onset of the measurement, t = 0, the
photocurrent assumes a mean offset proportional to the z-
component of the spin, but this offset is masked by white
noise due, in part, to optical shotnoise on the probe laser.
Filtering the photocurrent gradually reduces the uncertainty
in the photocurrent offset and produces spin-squeezing.

Using (AF2)g = k2N f/2, we can express the signal to
noise ratio as
fr

SNR? = nODZ — (38)
4 T4

To keep this expression valid we must have 7 < 74, so
our only recourse to creating large amounts of squeezing
in free space is to increase both the quantum efficiency n
and the optical depth OD as much as possible.

V. CONCLUSION

In this work, we have derived the most useful form
of the polarizability Hamiltonian describing the realistic
measurement of an ensemble of multilevel alkali atoms
with an off-resonant probe beam. We then showed that
this model was consistent with experimental observations
in the semiclassical limit where the atomic state was adia-
batically directed with a strong magnetic field. We found
that an adequate comparison was only possible after in-
cluding all relevant hyperfine transitions including their
relative (non-unit) oscillator strengths in our model of
the atomic physics.

We then developed a model for describing conditional
spin-squeezing in Alkali atoms. Detailed investigation
of the atom probe scattering physics indicates that it is
possible to eliminate unwanted tensor components of the
atomic polarizability by adopting a suitable atomic and
optical polarization geometry. This includes the elimi-
nation of dephasing due to the quadratic light shift [27]
without sacrificing a fixed laboratory coordinate system
for the measurement. Moreover, we found that condi-
tional spin-squeezing experiments could be performed at



small optical detunings without a substantial change in
the form of the photocurrent or filtering approach.
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APPENDIX A: THE IRREDUCIBLE
REPRESENTATION OF THE POLARIZABILITY
HAMILTONIAN

In this appendix, we derive the irreducible components
of the polarizability Hamiltonian, Egs. (11, 12, 13), from
the less useful form of Eq. (6). We begin by clarify-
ing notation used for the spherical basis and the spin
states of the Alkali atoms. Then we discuss properties of
the polarizability Hamiltonian and the dipole operator



before detailing the decomposition and re-formatting of
the Hamiltonian into its irreducible form.

1. Spherical basis

The spherical basis is the preferred basis when dealing
with atomic transitions due to its symmetry properties.
The basis is defined by the transformation from Cartesian
coordinates

&, = —(6,+18,)/V2 (A1)
& = (8, —i8,)/V2
é'O é;z

(A2)

and for an arbitrary vector A we have A, = €; - A so
that A = Zq A€ = Zq(—l)qué,q.

2. Alkali spin states

We represent the internal state of the atom in terms of
the (Zeeman degenerate) atomic hyperfine states, | f, m).
Here f and f’ are the total spin quantum numbers for the
ground and excited hyperfine levels respectively while m
and m’ are their projections on the z-axis. That is to
say, |f,m) are eigenstates of the total atomic angular
momentum,

f=80Llig+1,®1® 1; + Ligi (A3)
where §, 1, and i are respectively the electron spin, orbital
angular momentum, and the nuclear spin. The quantum
numbers, f, and m, are defined in the usual manner,

2 f,m) = R2f(f +1)|f,m)
Flfom) = hm|f,m)

(A4)

We use the notation that fi are in the spherical basis

fe=F(fEify)/ V2

It will also be useful to define a projector onto the ground
state f

(A5)

Py =3 |f.m){f.m] (A6)
and a projector onto the excited state f’
Ppe= Y 1 m)(f . (A7)

m’
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3. Hamiltonian approximation

We begin with the single-particle dipole Hamiltonian
H = —d - E. The dipole operator d = er, can be split
into its raising and lowering components

d = da=) 4am
i) = " Bapy
fif!
a0 = 3" prap
fif!

(A8)

and the electric field operator can be split into rotating
and counter-rotating terms

B - BO 4B
BO) = Vg late +al e
B = Vg a8 +a,8,]

After using the rotating wave approximation and one of
many available perturbation expansion techniques (e.g.,
adiabatic elimination) we arrive at the familiar polariz-
ability Hamiltonian [17, 30, 36],

(A9)

= YBO . SE R

(A10)
Iy hAg ¢

where the atomic polarizability between a particular
ground state (f) and excited state (f’) is defined as

&g = PpdPpdipy (A11)
DX D I m)(fm"|d]f,m) (A12)

m  m/ m/

x(f,m/|dT| f,m)(f,m]|.

This expanded expression involves dipole operator ma-
trix elements of the form, (f',m’|d,|f, m) where |f,m) is
a Zeeman sub-level in the ground-state hyperfine man-
ifold, |f/,m') is a virtual state in the excited hyperfine
manifold, and ¢ = 0, %1 labels the helicity of the electro-
magnetic field.

The above notation is complete, but for the rest of this
appendix we work with only one particular f, f’ combi-
nation and remove the subscripts with the simplifying
notation change

Py d
Prdh By - di
Gy — &

(A13)

However, when the complete Hamiltonian is considered,
the summation over all possible f, f/ combinations is re-
established.



4. Matrix element decomposition

In order to work with the above expressions, it is ad-
vantageous to simplify the dipole matrix elements as
far as possible. By employing the Wigner-Eckart the-
orem, the angular dependence of the matrix element,
(f/,m/|d|f,m) can be factored into the product of a
Clebsch-Gordan coefficient and a reduced matrix ele-
ment,

(fomldgl f',m') = (fym|1, g f'ym = g)(FlIdllf)-

Since the dipole operator acts only on electronic degrees
of freedom, it is further possible to factor out the nuclear
spin degrees of freedom via the explicit coupling,

(s = (=

(A14)

DI+ 125+ 1)
{145 banad

where 7 is the nuclear spin quantum number, j and j’
are the ground and excited state fine structure quantum
numbers, and d. is the dipole operator with respect to
the electronic degrees of freedom.

(A15)

5. Tensor decomposition

From Eq. (17-89) of reference [43] we see that we can
form an irreducible tensor, ZAy(,{), from a linear combina-
tion of tensor operators Ué'{) and f/q(,ﬁ ) via the definition

ZA,'S,‘Z) - Z Uq(ﬁ) Vq(,fi/) <K/a qa K’? q/|j’ m>
a9’

(A16)

where (k,q;Kk’,¢'|j,m) are Clebsch-Gordan coefficients.
This expression can then be inverted using

() Zz

Ky q; K, q |, m). (A17)

We now specialize to the case where Zfﬂ) = T,S{% U=
a, and V = df. Because we are creating a dyad (with
two vectors), we have k = &’ = 1. Inserting these above
gives the definition

T7(r{ Zd}dl&l,q, 17q,|j7m> (A18)
q,q'
and the inverse
dydb, =T (1,031, '], m). (A19)

Jym

We can use this latter expression to write the polariz-
ability as

& = ddf (A20)
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= Z**ﬂ*,d d, (A21)
= ZZ**** T, q;1,4lj,m)  (A22)
Jjm q,q’
= a%saVga® (A23)
where
‘ j
&V = N TDN &re (1L 1,qjm)  (A24)

m=—j a,q’

Filling in these Clebsch-Gordan coefficients explicitly,
we get

. 1 1 1
a® = 7 [—36363+\/§61é’*+3é°*éi]
SO YO N [ S g ﬂ
& = T —e, e — —e_

0 [ 5 Tt V2 +

1 1 JEN—t 1 k%
+70) 7 oe++7 +€0
1 1
+TW | —&zer & &

. 2
a? = 1 [é{;é{; +—& & +

é* ﬂ*:|

Sl
o

(A25)

Furthermore, using the definition of Tfnj ) and filling in
the Clebsch-Gordan coefficients explicitly, we get

7 = —ig (dodf —d,d" —d_dl)  (a2)
ﬂ”:lﬂ@ﬂ—aﬂ)

10 = = (~dd! +d.d))
TQ:;%@&—&@

7 = LG(JJ + 2dydfy + d dT)
fgzgg@@+@@

1 = — (dydl +d_dy)



Note that several standard references (including refer-
ences [43, 44]) contain an error in the prefactor of the
7 =0 term and in the sign of the j = 1 terms. However,
the fundamental definitions of T,(Tf ) and its inverse above
are valid.

Using recursion relations for the Clebsch-Gordan co-
efficients we can recast the tensor operators in terms of
more intuitive f operators [26, 45]

~(0
70 = —a)1,/V3 (A27)
To(l) = fj/f /\[
~(1 1
TJ(rl) = 5«}/f+/f
Till) = +a§cl}/f /\/5
L )
72 = —aff,(3f2 —f(f+ 1)]1f)/\/6
L ) A
TJ(rl) = —a;},\fﬂr (f +1 /)
7% = —aP)v2i (f,-1,72)
A(2) @)
T+2 = 7aff/f+
~(2 2
7% = -2 12
Here we have defined

o), = of ((2f—1)6j§71 +(2f +1)5!

+(2f +3)8]1) (A28)
A N A PV

2f+3

T 5f+1) (A29)
@ _ (Ll 2041 op
REA (fdf‘l f(f+1)5f

1
+f+15f+1> (A30)

These definitions have been chosen to make the each of
the quantities

)
ar
> >0
7 Q0lf,p

(A31)

for Ay > 0 for each term j. We have defined the

polarizability constants

. 2
A v VR A
af = (2J+]—)2 i f/ f (A32)
and

3eohl'\3

A |? (27 +1)
_ !

= [6ld| G
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which involves the atomic the spontaneous emission rate,
T', and transition wavelength, .

Now, to complete the derivation, insert Egs. (A27) into
the polarizability components of Egs. (A25), then insert
this and the definition of the electric field, Eq. (A9),
into the Hamiltonian, Egs. (9-10). Expanding, using the
properties of the spherical dot product, and the Stokes
component definitions (Egs. 5), and summing over the
f', we get the final expressions used in the text (Egs. 11,
12, 13).

APPENDIX B: ARBITRARY VECTOR
OPERATOR ROTATIONS

Here we are interested in evaluating the general opera-
tion of rotating a vector about an arbitrary direction by
an arbitrary amount in order to determine the semiclas-
sical evolution of the probe light as used in Eqgs. (26).

Consider the rotation of the vector spin operator

S = [smsys} (B1)

in Cartesian coordinates about an arbitrary direction

7 = [V, Vy» V2l/7 by the angle v = /72 +~2 +v2. This

rotation can be represented in the Heisenberg picture as
S =080t (B2)

where
U = exp[~ivS - ] = exp[—i(12 55 +7:5 +7:5:)] (B3)

The S'{ can be derived explicitly using the following equa-
tion for the arbitrary rotation of any vector

S/ = (S ) cosy + (- 1)(7

+ ((ﬁ K S) siny

- 5)(1 — cos)
(B4)

Expanding and rearranging terms we get

S =5, (1:” (1 —cos7y) + cos*y)

+S, (%Pyy (1 —cosvy)+ Pz sin’y)
72 v
v?

S, =S, (%% (1—cosy) — L2 sm*y)
72 Y

cosvy) — Y sin ’y) (B5)
v

2
+S, (3’(1 —cos7y) + cos*y)

+3. (7’1’;’2 (1 —cosvy)+ 7 sin 7) (B6)

s =8, (7232 (1—cosy)+ i} sin’y)
v Y
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& [ VzVy . Yz . These equations can be specialized to Eqgs. (26) which
S 1- — =5
oy ( 0% (1= cos7) o s 7) describes the experimental situation considered in this
e work.
+5. (;(1 — c0s7y) + cos 7) (B7)
Y
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Abstract. The goal of this article is to provide a largely self-contained
introduction to the modeling of controlled quantum systems under continuous
observation, and to the design of feedback controls that prepare particular
quantum states. We describe a bottom-up approach, where a field-theoretic model
is subjected to statistical inference and is ultimately controlled. As an example,
the formalism is applied to a highly idealized interaction of an atomic ensemble
with an optical field. Our aim is to provide a unified outline for the modeling,
from first principles, of realistic experiments in quantum control.

PACS numbers: 0.0

1. Introduction

In recent years, advances in technology have enabled a proliferation of experiments
where objects can be probed and manipulated near the fundamental quantum limits
of performance. The manipulation and readout of single qubits with unprecedented
coherence times both in condensed matter and in atomic setups, the reliable trapping,
cooling and shot-noise limited continuous observation of single atoms in high-finesse
optical cavities, and the production of various nonclassical states of light and of atomic
ensembles is only a subset of recent achievements. The large degree of control that can
be exerted at the quantum level suggests that classical engineering methodology can
be fruitfully adapted to this new setting. In particular, it seems that the concept of
feedback control should be of central importance in the engineering of reliable quantum
technologies, as in the classical case.

This article is intended as an introduction to the theoretical description of
quantum feedback control systems. We concentrate on a scenario that is common
in quantum optical experiments, where the system to be controlled is brought in weak
interaction with an external probe field which is subsequently detected. The detected
signal can then be processed and fed back to the system through some actuator. There
are various theoretical challenges in describing such a system:

e How does one model the system-probe interaction?
e How does one model a continuous measurement of the probe?
e How does one infer information on the system from the probe measurements?

e How does one design a feedback law that utilizes this information to achieve a
particular control goal?
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In the following we will address each of these questions in turn. Needless to say, it
would be impossible to cover every aspect and intricacy of each of these questions
within the scope of this article; rather, we aim to give a sufficiently detailed discussion
to keep the article (mostly) self-contained, and refer to the bibliography for complete
treatments.

As an example throughout the article, we discuss the preparation of entangled
states of an atomic ensemble using feedback control. The model consists of an ensemble
of atomic spins interacting dispersively with an optical probe, which is subjected to
homodyne detection. Several recent experiments have exploited a similar setup to
produce spin-squeezed states (SSS) [28,30,47] which have applications in a variety of
metrology tasks, including magnetometers [29,65] and atomic clocks [50,59, 76].

We consider this model because it is illustrative in several respects. First, the
model spans two quite different and interesting regimes. At short times the dynamics
are approximately linear [65] and the model describes the production of spin squeezing.
However, at long times the linear description is no longer valid, and we will show that
then an eigenstate of the collective angular momentum of the ensemble (a Dicke state)
is obtained. Although the long time limit described by this model is difficult to realize
experimentally at this time, the consideration of the substantial differences between
the regimes clearly demonstrates the challenges of quantum control. Second, the model
is a convenient example to demonstrate the modeling of a quantum control system
from first principles. Ultimately, by approaching the entire problem—from physical
modeling to inference to control—in a systematic manner, we hope to provide a unified
outline for future modeling efforts.

The article is roughly divided into two parts. The first part, consisting of sections
2, 3 and 4, is somewhat technical in nature. Its goal is to obtain from first principles,
using a simplified field-theoretical model of the interaction of an atomic ensemble with
a probe field, the quantum filtering equation (52). To this end, we begin by reviewing
in section 2 the statistical inference of quantum states. In section 3 we introduce a
field-theoretical model of an atomic ensemble coupled to an electromagnetic probe
field, and we discuss how it can be reduced to a stochastic equation. In section 4 we
detail how to properly condition the ensemble state upon the results from continuous
optical measurements in the field.

The second part, section 5, presents general principles of feedback control and
demonstrates how they can be applied to enable quantum state preparation. This
procedure is discussed in both the short time limit, where a linear approximation is
valid, and in the long time limit, where a more complete description is required [66].
Section 5 is fairly independent from the first part of the article, and a reader who
has some familiarity with the filtering equation, Eq. (52), could skip directly ahead to
this section. We have attempted, however, to give in sections 2-5 a unified picture of
quantum feedback control design, from the elementary physical interactions through
feedback-enabled state preparation.

As we proceed, we attempt to review the literature concerning measurement and
feedback control of atomic ensembles, while also putting into context related, but
more mathematical, works concerning estimation and control. In the end, we hope
to inspire further development in this field by highlighting the numerous connections
between the problems of quantum control and problems considered in the culturally
distinct context of the mathematics and control communities [4, 18, 71].
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2. What is a quantum state?

Quantum mechanics describes the statistics of observable quantities, very much like
classical probability theory. In fact, the foundation of quantum mechanics is just an
extension of probability theory, as we will discuss in this section. Such a point of view
allows us to apply classical constructions of probability theory directly to quantum
models. Though this section contains no surprises, we aim to clarify the concepts and
terminology used in the remainder of the article. We will pay particular attention to
what is meant by a “quantum state”, an issue that must be resolved before we can
discuss state preparation.

2.1. Classical probability

To set the stage for quantum probability we first discuss some of the elements of
classical probability theory [75]. As an illustration, consider throwing two dice. The
first ingredient we need in our theory is the sample space, usually denoted by 2. This
is just a set which describes all the “microstates” of the system; in our case, it is the
set of 62 = 36 possible outcomes of a throw 11, 12, ..., 21, 22, ..., 65, 66. A random
variable f is now a map f : 2 — R. For example, we could define a random variable
X that describes the sum of the two outcomes, i.e. X (11) =2, X(53) = 8, etc.

To complete the picture we need to introduce an object that can provide answers
to questions such as what is the probability of having thrown 667, or what is the
probability of having thrown at least one three? This is exactly provided by the notion
of a probability measure. Note that we can represent any question as a subset of ;
e.g., our first question is represented by the set {66}, while the second is represented
by {31,32,...,36,13,23,...,63}. These sets (and the questions they represent) are
called events. The probability measure PP is a map that associates to every event a
probability.

We can compose new events as follows. Given two events A, B C 2, the question
A or B?is represented by AUB, whereas A and B? corresponds to ANB. In particular,
the latter operation defines the joint probability P(AN B) of A and B. The probability
measure needs to be consistently defined with respect to these operations in the sense
that P(AU B) = P(A) + P(B) if AN B = &, i.e. if A and B are mutually exclusive.
Furthermore P(@) = 0 and P(2) = 1. In our example there is an equal probability
of having thrown any combination; hence P(A) = % for any event A with a single
element. Any other event can be constructed as a union of these “elementary” events
and its probability can be found using the formula for P(AU B).

Now suppose we wish to perform a particular observation on the system; we have
already defined such observations (random variables) as maps on Q. To obtain the
probability of a particular observation, we simply invert the corresponding map. For
example, the probability that we throw a combination that sums to 4 is P(X =4) =
P(X~'(4)) = P({13,22,31}) = . Hence the probability measure contains all the
information available on the outcome of any observation, i.e., P represents the state of
the system. The philosophy behind this choice of terminology is that physical theories
exist to model the outcomes of observations; the “state” is the object of the theory
that gives rise to the statistics of any such observation.

Let us now consider classical state preparation. The physical mechanism that
prepares the state of the dice, i.e. that causes every combination to have equal
probability, is the throwing process. Suppose we want to prepare a different state,
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for example a state that has a high probability of obtaining two sixes. We could
obtain such a state by modifying the physical process that creates it. For example, we
could engineer dice with an nonuniform mass distribution, so the sixth face is lighter
than the other faces; then the rolling of the dice is more likely to terminate with the
sixth face facing up.

There is a different way in which we can change the state. The conditional
probability of event A given that we have measured event B is
i 1)
Suppose we observe X = 12. Then the conditional probability of having thrown 66
is P({66}|X = 12) = 1, whereas without conditioning P({66}) = 3. However, if we
happened to measure X # 12 then P({66}|X # 12) = 0. This corresponds to the
intuitive notion that if we see that we have thrown 66, then the probability that we
have thrown 66 is one, no matter what its probability was before we had gained that
information. However the probability that we would see 66 in the first place is only
%. Hence we can create states by conditioning a “prior” state on a measurement, but
only very inefficiently: to prepare a state with high probability of obtaining 66, we
have to keep throwing the dice until we happen to observe X = 12.

There is a final possibility which combines the two methods of state preparation.
Suppose that we perform an observation not after the throw has completed, but while
it is still in progress. Moreover, we allow ourselves to interfere with the dice: if the
rolling dice threaten to terminate with a low value of X, we give them a shove so they
keep rolling. This way the probability of throwing high numbers is elevated. In other
words, we prepare the state of our choice by performing observation and applying
feedback to the system dynamics. This crude example represents the type of state
preparation that we consider in this article for quantum systems.

We conclude this section by introducing expectations and conditional
expectations. If  is a finite countable set (which we have implicitly assumed in
this section) then we may always decompose a random variable f : Q@ — R as follows.
The map f takes the values f; € R on disjoint subsets S; = f~1(f;) C Q such that
U, Si = Q. Hence we can write

flw) = ZfixSi (w) (2)

P(A|B) =

where xs, is the indicator function of S;, i.e. xs,(w) =1 if w € S;, 0 otherwise. The
expectation of f is given by

Ef = Zfip(si) (3)

and represents the value that f takes on “on average”. Note that the state P uniquely
determines E, but the converse is also true as by construction Exs = P(S) for any
event S C (). Hence we can equivalently define the state of the system by specifying
the expectation of every system observable.

Similarly, we can define the conditional expectation of f =, fixs, given that
we have measured g = Y, gixT;:

E(flo)w) = > 3" £iP(S) T, () @)
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Now E(xslg)(w) = P(S|g = g(w)). Hence we can equivalently define the state of the
system, conditioned on a measurement of g, by specifying the conditional expectation
of every system observable with respect to g.

Though entirely natural from a probabilist’s point of view, it is not customary
in physics to think of the conditional expectation as a random variable. One way to
interpret Eq. (4) is that the random variable E(f|g) is the best estimate of f given
g [60,75]. To see this, first note that E(f|g) is by construction a function of g:
E(flg)(w) = X(g(w)) where we define X' : g; — >, f;P(S;|T;). It is not difficult
to show that of all functions X/, the one that minimizes the least-squares criterion
E[(f — X'(g))?] is exactly X’ = X. This is precisely what we mean by E(f|g) being
the best estimate of f given g. Evidently this idea is equivalent, or in some sense dual,
to the notion of a conditional state that we introduced earlier.

2.2. Quantum probability

We will now formulate quantum mechanics in the same language as the classical
case [53,68]. An observable (random variable) in quantum theory is given by a
self-adjoint operator F' on some complex Hilbert space H. Assuming H is finite-
dimensional, we always have the spectral decomposition

FZZfiPi (5)

where f; € R are the eigenvalues of F and P; = P? = P; are projection operators
onto the corresponding eigenspaces. The picture is completed by introducing a map
E : -+ Tr[-p] with some p = pf > 0, Trp = 1. Then EF is the expectation of the

observable F'. In terms of the spectral decomposition
EF =Y f;EP, (6)

Clearly the projectors P; play the role of events s, in the classical theory. Indeed,
a measurement of F' yields the outcome f; with probability EP;. Thus any quantum
observable is identical to a classical random variable.

We can make the correspondence explicit in the following way. As we are free
to choose any basis in the Hilbert space, we may always choose a basis in which
F is diagonal. We can then interpret the diagonal elements of F' as the values of
the random variable f, where €2 is just the set of diagonal entries: f : i +— Fj;.
The P; now correspond exactly to indicator functions on € and P(S) = . xs(%)pii-
Note that the underlying Hilbert space plays a passive role in the theory, just like
the sample space €2 in classical probability—the central element of the theory is the
set of observables we are interested in. As long as we are interested in a set of
observables that all commute with each other, then quantum and classical probability
are identical theories: commuting observables can be simultaneously diagonalized, so
we can follow the above “recipe” to transform between the classical and quantum
descriptions. In other words, classical probability theory is a special case of quantum
probability theory.

The embedding of classical in quantum probability allows us to carry over directly
concepts from classical probability to sets of commuting quantum observables. For
example, in the classical case we defined the joint probability of two events A and
B as P(AN B) = E(xaxgs)- This carries over directly to the quantum case for two
quantum events P, @ as long as they commute: i.e. the joint probability of P and @
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is E(PQ) = Tr[PQp]. Similarly, we obtain an expression for conditional expectation
for two commuting quantum observables F' = 3" f;P; and G = ", g:Q;,

516) = 325 g PQZ Q. (7)

which is itself an observable as in the classical case, interpreted as the best estimate
(in the least mean square sense) of F given . Note that these are not even
“quantum analogs” of classical concepts—these are entirely classical operations. We
can obtain these expressions by writing the commuting set of events in the diagonal
basis, transforming to the classical picture, applying the classical operation, and
transforming back to the quantum picture in the original basis.

What makes quantum probability different from classical probability is the
existence of noncommuting observables. For events or observables that do not
commute the classical probabilistic concepts do not make any sense: for example,
the joint probability of P,@Q with [P,Q] # 0 cannot be unambiguously defined as
E(PQ) # E(QP). Similarly E(F|G) cannot be defined for [F, G] # 0. Hence we do not
allow simultaneous measurement or statistical inference of noncommuting observables.
The fact that noncommuting observables are inherent to quantum models restricts the
amount of information that can be obtained from the system by measurement.

Once we have fixed a commuting family of observables to measure, however, the
measurement process is reduced to straightforward application of classical probability
theory. In particular, even if we are interested in modeling a pair of observables F'
and G that do not commute, we can still perform statistical inference as long as both
observables commute with the observation H. After all, by Eq. (7), E(F|H) and
E(G|H) commute and can hence be measured simultaneously, despite that F' and G
do not commute. We will repeatedly exploit this fact throughout this article.

To illustrate these ideas, consider the example of a single spin—% atom, and
suppose we are interested in controlling the spin observables (Pauli matrices)
Oz,0y,0,. We run into problems if we try to directly measure o, as this does not
commute with o, and o,. Because the best estimate of o, or oy with respect to o is
undefined, it is unclear in what sense one could control o, and o, if we keep observing
0.

We have already hinted at the solution to this problem: we must observe a fourth
observable X that commutes with o, 0,,0,. Then all three conditional expectations
are well defined. A famous example of this procedure is the Stern-Gerlach apparatus:
in this case the atom passes through a strong magnetic gradient which correlates the
spin observables o, ,, . with the spatial position X of the atom. By measuring X, which
commutes with o , ., we can form best estimates of the latter three observables, and
thus at least conceptually these can be controlled.

In practice the Stern-Gerlach device is not a good system for controlling the spin,
as the observable X is a different degree of freedom of the same atom that carries
the spin. When the atom hits the screen, enacting a measurement of X, the atom is
effectively destroyed and there is no point in updating the spin state for further control.
The approach we take in this article is a realistic, though conceptually identical, version
of this example. Instead of coupling the atomic spin to the atomic position, the spin
interacts with an external electromagnetic field. Even though photodetection of the
field is destructive this will not affect the atom itself.

The quantum state is an object that associates an expectation to the relevant set
of observables. We refrain from defining the quantum state as the density matriz p.
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The properties that any expectation map must obey imply that we can always find
a density matrix p such that the expectation can be expressed as EF = Tr[pF] for
the relevant set of observables F'. What this relevant set is, however, depends on the
context.

To illustrate this subtle distinction let us consider again the Stern-Gerlach
example. Before conditioning we consider the four observables o, , . and X. Hence
we naturally express the state as a density matrix on H, ® Hy, the tensor product
of the atomic spin and position Hilbert spaces. However, we can only condition
observables on X that commute with X. Hence after conditioning a spin-position
density matrix is no longer meaningful, as many observables on the position Hilbert
space (e.g. momentum) will have an undefined conditional expectation.

To find the natural state after conditioning, recall that E(o; , | X) all commute.
Hence we can describe them as classical random variables s , (w) on some probability
space 2. To express the state as a density matrix, then, we must also make it random:
we define p(w) on H; through s, 4 »(w) = Tr[p(w)oy,y,.]. This conforms to the intuitive
idea that after measurement, the conditional state is itself a classical random variable,
where  is simply the set of possible outcomes of X. It also highlights, however,
that in order to talk sensibly about state preparation we must carefully select which
observables we wish to specify. Though the “dual” description in terms of a density
matrix is often more economical, we will often find it both conceptually and technically
simpler to obtain results by considering conditional expectations to be observables on
Hs ® Hg.

The three methods of state preparation discussed in the previous section carry
over directly to the quantum case. All these methods have been discussed to various
extent in the literature; references to their various experimental implementations will
be given in section 5. The first method corresponds to designing a Hamiltonian whose
time evolution generates the desired state. The drawback of this method is that such
a Hamiltonian may be highly nonlinear and difficult to engineer in practice.

The second method corresponds to conditioning. As we saw in the example
above, to do this we must “open” the system by introducing another observable.
We emphasize, however, that there is no physical “collapse” associated to the actual
measurement: we just use classical conditioning to update our state of knowledge.
The drawback of this method is that the outcome of the measurement is random and
will not always result in the desired state; particularly in cases where the state is
prepared with low probability, this may not be a desirable option.

The third method, which is the main topic of this article, is that of conditioning
with feedback. The advantage of such a method is that it can be implemented
with simple Hamiltonians, while it does not suffer from the indeterminism of pure
conditioning. The method can also be more robust than simple Hamiltonian evolution,
as it is not as sensitive to e.g. timing errors or precise knowledge of experimental
parameters [65,70]. However, succesful implementation of such a method requires
sensitive, continuous-time quantum-limited measurements and fast in-line signal
processing, techniques that have only recently become available.

We separate the development of quantum feedback control into three parts. In
order to interpret the measurement current and feedback we must develop a physical
1 Of course if we were interested in both position and momentum, we could couple to yet another
observable that commutes with o 4,. as well as position and momentum. This way we move further

and further down the “Heisenberg chain”. Ultimately, however, we have to make an observation,
which will rule out some incompatible observables.
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model of the system and its interaction with the environment. This first step, the
physical modeling step, embodies the “physical content” of the problem. In the second
step we condition the system dynamics based on an observation of the environment.
This statistical inference step is, as we have discussed, entirely classical in nature. The
third step is the control problem, finding a control law that will prepare the desired
state. In the following sections we consider each of these problems separately.

Note that all the constructions in this section can be generalized to infinite-
dimensional Hilbert spaces in the quantum case, and to infinite or continuous €2 in
the classical case. However, a rigorous discussion of the associated mathematics is
beyond the scope of this article. Though conceptually the finite and infinite cases are
very similar, we will need to extend the finite techniques somewhat in section 4.2 in
order to deal with continuous systems. For lucid introductions to the general theories
of classical and quantum probability we refer to [75] and [53], respectively.

3. The physical model: from QED to stochastic equations

In this section we will describe a microscopic model for the class of systems we
consider. The model consists of an atomic ensemble coupled weakly to an external
electromagnetic field which is ultimately detected.

8.1. System model from quantum electrodynamics

It is well known from quantum electrodynamics [13,54] that the observable for the
free electric field is given by

h w )
E(r,t) = | =—5— /= (iax s€x.s€" KT 4 he) dk
(r,t) @) ;/ 5 (tak s€k, s€ +h.c) (8)

where w = c|k|, ex,s are polarization vectors and ax s are plane wave (Fourier)
mode annihilation operators that satisfy the commutation relations [akﬁs,aL,)S,] =
53(k —k’)dss. We assume that the atomic ensemble (centered at the origin) interacts
with the field predominantly through its collective dipole moment; i.e., the interaction
Hamiltonian will be of the form H;(t) = —d(¢) - E(0,t) where d(t) is the ensemble
dipole operator. In practice there will be some ultraviolet cutoff, which we can obtain
e.g. by averaging the electric field over the volume of the cloud of atoms instead of
evaluating it at the origin. We will write

EM(r,t) = [EC (r,0)]7 =) / 9(K) ax sex 5" T Bk (9)

where E = i(E(H) — E()) and ¢(k) is the mode function, e.g. g(k) o< v/we %" if we
average E over a spatial Gaussian distribution.

The full interaction is sketched in cartoon form in Fig. 1a. The atomic ensemble
interacts through its dipole moment with all plane wave modes in three dimensions. A
strong, focused laser beam at frequency wg is modeled by bringing the corresponding
modes into a large-amplitude coherent state. The drive is scattered predominantly
in the forward direction, and is ultimately detected. The remaining modes are in
the vacuum state and drive spontaneous emission of the ensemble in all directions.
This essentially complete description of the interaction embodies all the physics of
the problem, and thus allows one to predict quantities such as the spontaneous
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(a)

strong drive

3D plane wave modes

(b)

strong drive

vacuum input

o
(semiclass.) single scattered field
freq. o, 1D plane wave modes

Figure 1. (a) Schematic of the full interaction Hamiltonian, where all plane wave modes in three
dimensions interact with an atomic ensemble. One of the incoming modes is coherently excited
with frequency wo and large amplitude; the coherent excitation scatters mainly in the forward
direction. The remaining incoming modes are in the vacuum state and drive spontaneous emission.
(b) Simplified one-dimensional model, where plane waves are scattered off a single-mode cavity in
one direction only. The strong driving field is treated semiclassically and coherently excites the
cavity mode, which has frequency wg. Spontaneous emission can be added to the model in a
phenomenological manner.

emission rate. The full picture is also very complicated, however, as it requires a
detailed analysis of the atomic structure, a partitioning of the field into observed and
unobserved modes, etc. Such an analysis is beyond the scope of this article.

Instead, we will investigate a highly simplified model (Fig. 1b) that is widely
used in quantum optics [27,78,83]. To justify such a model, we claim that most of
the interesting physics occurs in the direction of the driving laser, as most of the
light is scattered forward and observed in this direction. Hence we can approximate
the system by a one-dimensional model where only the forward modes are treated
exactly and the strong drive is treated semiclassically. Spontaneous emission into the
eliminated modes is unobserved, and hence we could include it phenomenologically by
adding decoherence. Finally, to simplify the interaction with the ensemble, we place
the ensemble into a leaky single mode cavity. This allows us to treat the interaction
between the ensemble and the field for a single frequency only, that of the cavity mode,
which is chosen to be at the laser driving frequency wg. The cavity dynamics is then
adiabatically eliminated to give an effective interaction between the ensemble and the
external field.

Let us systematically work out this simplified model. We begin by treating the
one-dimensional external field that is ultimately detected. We can obtain an expression
for the field by integrating Eq. (8) over a transverse area [27], or alternatively by
directly quantizing the wave equation in one dimension [78]. We obtain

h * Jw ,
E(z,t) =4/ v/ = (ia,e”™®@0t=2/9) L he. 1
(z,1) 27T€00/0 5 (taye +h.c.)dw (10)

for the electric field intensity in a single polarization state (we will assume polarized
light), where [aw,al,] = §(w — w’). The annihilators a, correspond to plane wave
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modes in the z-direction, k = (w/c)z, where positive z is defined to be on the left
in Fig. 1. Thus the field for z < 0 is propagating towards the cavity mirror in time,
whereas z > 0 propagates away from the mirror. In practice the cavity mirror will
reverse the propagation direction, so we can reinterpret z > 0 as the component of the
field propagating toward the detector, whereas z < 0 is the incident part of the field§.
We now introduce the cavity mode with annihilation operator b(t) = be~%ot. The
interaction Hamiltonian between the cavity mode and the external field is given by

Hep = h/ k(w)(ial bet@=wolt gl pfeilwtwolt L ¢ )dw
0

= ihi(b(t) + b)) (E(0,t) — EF)(0,1)) (11)
where we have used
E®) (z,t) = [ET) (z,0)] = /OO k(w)age @2/ dy (12)
0

Here k(w) does not only depend on the external field but also on the frequency-
dependent transmission of the cavity mirror, and is unitless. An interaction
Hamiltonian of this form can be obtained from the QED Hamiltoian by expanding it
into “quasi-modes” corresponding to either inside or outside the cavity; see [15].

We will briefly describe the remaining Hamiltonians. The interaction Hamiltonian
of the cavity mode with a resonant classical drive is given by

Hp = hE(b+ bY) (13)

where £ is the drive amplitude. Spontaneous emission is treated by introducing
another field E with annihilation operators ¢, called the side channel, and adding
another Hamiltonian H, = —d(t)E(0,t) where d(t) is an atomic dipole operator.
Unlike the forward channel F, which we will ultimately observe, the side channel is
left unobserved. This is a simple but effective way to model the partitioning of the
full three-dimensional field E(r,t) into observed and unobserved modes.

The atomic Hamiltonian H 4 and the ensemble-cavity mode interaction Hac are
more variable, as they depend on the structure of the atoms in the ensemble. In
particular, we get drastically different behavior when the atoms have a transition that
is resonant with the cavity mode than in the far detuned case. We will consider a
specific example in section 3.3.

8.2. Quantum noise and the Markov limit

The discussion in the previous section was based entirely on “mechanical” arguments;
i.e., the electric field emerged naturally by quantization of Maxwell’s equations and
the dipole coupling to matter. Any physical model ultimately has its roots in this
level of description. However, we have already discussed that the foundations of
quantum theory are essentially a glorified probability theory, where any observable is
equivalent to a random variable on some probability space. As we will be interested
in observations of the field, it is essential to make the connection between the physical
model and its manifestation as a (quantum) probabilistic dynamical system.

& In a full three-dimensional description the cavity mirror would be modeled by an interaction

Hamiltonian that scatters into the backward propagating modes with terms such as aikak. In
the one-dimensional case, however, we can simply absorb this reflection into the definition of the

field.
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We can consider Eq. (12) as the Fourier transform of the operator distribution
k(w)f(w)a,, where 0 is the step function. We will always take the incoming field to be
in the vacuum state as in Fig. 1. Each a,, can be thought of as an independent quantum
“complex Gaussian” random variable, in the sense that its “real” and “imaginary”
parts a,, +af, and ial, —ia,, are precisely Gaussian random variables. Hence E(1)(0, )
will be some sort of quantum complex Gaussian noise. Note that the two quadratures
E®) 4+ EC) and iE¢) —iE™) do not commute, so we cannot interpret E(T)(0,t) as
a classical complex noise. We would now like to consider the Heisenberg equation (in
the interaction picture with respect to the field dynamics)

g
X = ﬁ[HJ_ +Ha+ Hac + Hp + Her(t), X¢] (14)

as being driven by the noise iE(~) — iE(), together with an observation of the field
which need not commute with the driving noise. Then the statistical inference step
can be formulated as finding the best estimate of the noisy time evolution of atomic
observables given noisy observations of the field.

Similar problems have been studied in classical probability for about a century,
and the main lessons learned there appear to carry over to the quantum case. In
particular:

(i) Statistical inference of continuous-time processes is essentially intractable unless
we approximate the noise process by a white noise. In this case, the time evolution
of the system is Markovian [60] (i.e. the distribution of future system states
depends only on the present state and not on past history) and statistical inference
is described by the elegant theory of Markov nonlinear filtering [16,51].

(ii) Dealing with white noise directly is possible, but the resulting theory is very
technical due to the fact that white noise is an extremely singular object
[35,43,45]. It is much easier to build a theory from a Wiener process, the integral
of white noise, which is at least continuous [60].

We fill follow a similar program below for quantum systems; i.e., we will first find
a Markov approximation of the full field-theoretic model described previously, then
develop a theory of quantum Markov filtering.

Before we embark on this path, it should be mentioned that the problem with
colored noise takes on an even more severe form in the quantum case. In the classical
case the problem is mainly technical; there is no conceptual problem associated
to statistical inference with colored noise, but it is not possible to obtain filtering
equations in a recursive form [14]. In the quantum case, however, it is not even clear
what we mean by an observation of colored noise, let alone the associated statistical
inference problem, as the field operators may not commute with themselves at different
times or with the system [25]. There is as of yet no satisfactory solution to this
problem; in particular, a satisfactory theory of quantum non-Markovian continuous
measurement has yet to be developed. As we will see, however, these problems do not
appear in the Markov case.

3.2.1. Classical and quantum stochastic differential equations Let us briefly review
the classical concept of a stochastic differential equation (SDE) [60]. We denote by
W; a one-dimensional Wiener process. It is defined on a probability space 2 where
each w € Q corresponds to a single sample path {W;(w)} of the Wiener process.
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Heuristically the time derivative W, would be white noise, so we wish to give meaning
to a differential equation of the form

9 X0(w) = £ () + 0 (w) D) (15)

However, this equation makes no mathematical sense as W; is differentiable with
probability zero. The solution is to rewrite it as an integral equation

t t
X: = Xo —i—/ f(Xs)ds —|—/ o(Xs) - dWy (16)
0 0
and then to define the stochastic integral. As a notational analogy with ordinary
differential equations we will also write

which is equivalent to (16) by definition.
Ito defined a stochastic integral in the following way:

tn n—1
/ fodWe = lim > fi (Wi, — Wi,) (18)
to [tig1—ti|—0 =0

Precisely in which sense the limit is taken is a central construction in It6’s theory
which we gloss over. A different definition, due to Stratonovich, is

+ n—1
to fs °d ° |ti+1h—r2\—>0 k=0 §(ftk+1 + ftk)( brtr ™ tk) (19)

It is a signature of the singularity of the problem that these two integrals do not give
the same answer; such integrals would necessarily be the same if we could interpret
them in the Riemann-Stieltjes sense. It is now ambiguous, however, how we should
interpret Eq. (16).

A major difference between the two integrals is their transformation property.
Ordinary Riemann-Stieltjes integrals obey the Leibnitz rule d(X;Y;) = Y:d X + X:dY;
(we use the shorthand notation of Eq. (17)). It turns out that this property is also
obeyed by the Stratonovich integral (19). The It6 integral, on the other hand, obeys
the modified transformation property d(X:Y;) = YidX; + X;dY; + dX; dY;, where
we use the Itd rules dW? = dt, dt? = dW,dt = 0 to evaluate the rightmost term.
Similarly, the Itd transformation rule for arbitrary functions becomes

dg(Xy) = ¢'(X1)dX, + 39" (X )dX7 (20)

Note how the shorthand notation of Eq. (17) allows us to express these deep results
in a compact way. The power of the It6 calculus lies in the fact that complicated
transformations can be perfomed using only simple symbolic manipulations.

The fact that the Stratonovich integral obeys the Leibnitz rule suggests that
physical systems should be described by a Stratonovich SDE; after all, if we take a
physical system with a smooth driving force, and add some noise to this force, we do
not expect the transformation properties of the system to change. We will investigate
this further in the next section. On the other hand, the Itd integral has the nice
property that its expectation vanishes|, which suggests that It6 SDE are natural
|| The It6 integral is only defined for nonanticipative integrands, i.e. f; must be independent from

any increment Wi, — Wy, with ¢t2 > t; > t. It follows immediately from (18) that the integral has
vanishing expectation.
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from the point of view of statistical inference. Fortunately we can have it both ways,
as there is a conversion formula between It6 and Stratonovich SDE: the solution of
dX; = f(Xy)dt + o(X;) o dW; is equivalent to the solution of

dX; = f(Xy)dt + $0(Xy) - Vo(Xy)dt + o(X,) dW, (21)

We see that in the mean, the Stratonovich noise results in an effective drift. This
additional term is known as the It6 correction.
Let us return to the quantum case. Define

1 e it
ap = — ase “rdw 22
K V2T /_oo (22)

where we have extended a, to negative frequencies. In the vacuum state, the two
quadratures x; = a; + az and y; = ta; — iaI have zero mean and delta-correlated
covariance, e.g. Ex; = 0 and E[z;2,] = Elatal] = §(t — s). Moreover, it is easily
verified that [x¢,zs] = 0 for t # s (and similarly for y;); this is important, as it
means that we can interpret z; as a classical random process. Indeed, following the
procedure of section 2.2, we can simultaneously diagonalize the operators z; at all
times and transform to a classical probability space. We find that both z; and y; are
entirely identical to classical white noise. We will thus call the field a; quantum white
notse.

Note that the noise E(+)(0,t) that drives Eq. (14) is not white. However, if the
system response has a sufficiently narrow bandwidth we would expect the noise to
“look” white on the slow timescale of the system, as k(w) is locally flat. Equation
(22), and the associated introduction of negative frequencies, should be seen purely
as a mathematical construction that corresponds to noncommutative white noise. In
the next section we will make these ideas more precise by showing in what sense the
physical model (14) can be approximated using noises of this form.

We now proceed as in the classical case. Define the quantum Wiener process

t
At:/ Q¢ dt (23)
0

We can now introduce the quantum Itd integral [10,26,37,55]

tn n—1

XodA, = lim )Xy, (Ay,,, — Ay) (24)
to [ti+1—ti|—0 =0
for nonanticipative X; (i.e., X is independent of any increment A, — A,, u > v > t.)
It immediately follows that the integral has vanishing expectation in the vacuum
state. Moreover, as Xy, is independent from Ay, ., — Ay, , the process and increment
commute: hence X;dA; = dA; X;. The quantum It6 rules are dA; dA;f = dt,
dA; dt = dA] dA, = dA% = 0.

Similarly, we can define a quantum Stratonovich integral [26,31, 32]

+ n—1
n . 1
to Hoodds = |t1:+1h—%—>0 kzzo 3 (Ko + Xo)(Auyy —Au) - (25)

which obeys the Leibnitz rule but does not have vanishing expectation. Additionally,
in this case X; does not commute with the noise increment, so X; o dA; and dA; o X,
are two distinct forms of the Stratonovich integral.

Note that the above discussion is entirely heuristic; the mathematical objects
we are using are extremely singular and require careful definition. The quantum It6
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theory was introduced in a rigorous way by Hudson and Parthasarathy [37]; a more
heuristic treatment can be found in Gardiner and Collett [26]. More recently the
relations between the quantum It6, Stratonovich and white noise formalisms were
investigated by Gough [31,32]. We refer to these references for a detailed treatment.

3.2.2. The Wong-Zakai theorem and the Markov limit Mathematically, (quantum)
stochastic differential equations are rather peculiar objects—strictly speaking they are
not even differential equations, but integral equations. Nonetheless SDE are widely
used to model physical phenomena. The reason that this is so succesful stems from
an important result, originally due to Wong and Zakai [82], which can be stated as
follows. Suppose we have an ordinary differential equation of the form

dz(t)

= @A) + o 0)E 1) (26)
where £*(t) is some piecewise smooth random process that converges to white noise
in some appropriate sense as A — 0. Then the solution z*(¢) of Eq. (26) converges as
A — 0 to the solution of

dXt = f(Xt) dt + J(Xt) o th (27)

This result tells us that the behavior of a “real” physical system is well approximated
by the solution of an SDE as long as the noise is sufficiently wideband. Additionally
our notion that physical systems are well described by Stratonovich equations is now
rigorously justified. In the remainder of this section we will give a simple introduction
to the quantum analog of the Wong-Zakai procedure. For a rigorous treatment, we
refer to [1,33].

As a first step we partition our system into fast and slow timescales. The
electromagnetic noise and the high-frequency oscillation of the cavity mode operate
on the fast timescale, whereas the driving field and the coupling to the atoms operate
on a much slower timescale. In order to study the Wong-Zakai limit we completely
ignore the slow interactions by turning them off—a very good approximation if the
correlation time of the noise is short. This is equivalent to the assumptions mentioned
in the previous section: a short correlation time implies that x(w) is slowly varying,
whereas ignoring the slow interactions assumes that these do not significantly shift
the resonance frequency of the cavity.

What remains is the fast dynamics, which we write in propagator form

% = _%HCFUt = (b(t) + b)Y EC(0,t) - ED(0,4)U;,  (28)

The key physical assumption we must make to obtain the white noise limit is that the
cavity is weakly coupled to the external field. Naively one would expect that we could
implement this limit by solving the equation dU;/dt = —iAHcrU;/h and then taking
the limit A — 0. This clearly doesn’t work, however, as this would just turn off the
interaction between the cavity and the field. The problem is that A not only changes
the coupling strength, but also the timescale of the interaction dynamics.

The effect that we are trying to capture in the weak coupling limit is not a precise
description of fast dynamics, but the effective contribution of the noise to the slow
dynamics. We saw in the classical case, Eq. (21), that the noise causes an effective
drift in the system dynamics. If we replace o(z) — Ao(z), we infer from (21) that this
drift occurs on a timescale t/A\2. This suggests what we can make the substitution
Hep — AHep and let A — 0, but we will only obtain the weak coupling limit if we
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simultaneously rescale time as t — t/A2. This idea was originally suggested in the
context of classical stochastic approximations by Stratonovich [67] and was introduced
independently in the physics literature by Van Hove [72].

After performing these rescalings we obtain

PoAbE) @) el

- [a; ()b + al ()T — ax(t)b! — ax (t)b] U

Let us investigate the behavior of the rescaled noise

1 [ ;
ax(t) = X/o K(w) ag e~ @mwo)t/A% g, (30)

as A — 0. In particular, we obtain for the correlation function

1 [ ; -

E[ak(t)a;(s)] = ﬁ/ K(M)Qefl(wfwo)(tfs)/)\zdw )‘_9 '7/ (S(t . S) (31)
0

with v/ = 2mk(wo)?, where we have used limy_oe > /A2 = 276(w)d(t) (in the

sense of Schwartz distributions). Hence in the weak coupling limit the resonant terms

converge to white noise driving terms. However, for the rescaled noise

1 [* ;
ax(t) = X/ K(w) ageWTwolt/>? g, (32)
0
we obtain
1 [ ; -
E[dk(t)é;(s)] = ﬁ/ Ii(w)ze_z(w+w°)(t_s)/)‘2dw =00 (33)
0

Hence the nonresonant terms vanish in the weak coupling limit. We see that the weak

coupling limit gives us the commonly used rotating wave approximation for free.
Studying the convergence of U} is more complicated, but can be performed by

investigating the convergence of each term in the associated Dyson series [1,33]. The

result is, however, not surprising: Eq. (29) converges to the Stratonovich equation
[31,32]

dU, = \/+ {dAI 0 bU; — dA; o bTUt] (34)

which is essentially the quantum version of the Wong-Zakai theorem [33]. We can
equivalently express the result in the It6 form as

aU, = [V bdA] = /76 dA, — Sy/bTbde| U, (35)

where an Ito correction term emerges as in the classical case.

In addition to the emerging quantum stochastic equation, a detailed treatment of
the quantum Wong-Zakai limit usually results in an additional small energy shift to
the system Hamiltonian [1,33]. This energy shift can be normalized away by a proper
choice of the system Hamiltonian.
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3.3. Example: spins with dispersive coupling

Now that we have made a Markovian approximation to the interaction, it remains to
add the slow dynamics back in. We do this simply by adding the corresponding
Hamiltonians. As discussed before, spontanous emission is modeled by coupling
the atoms directly to an unobserved field E through their dipole moment d(t) =
ge~wat 4 gleiwdt (here o is an atomic decay operator and wy is the dipole rotation
frequency.) Through a similar analysis as the one performed above, we obtain our
complete physical model:

U, = {\/?bdAI — /Y bHdA; + AT o dAl — AT ot dA,
— 1ybTbdt — Ly otodt — L(Ha + Hac + Hp) dt} Ut (36)

Before we specialize to the particular model that will be used in the remainder of the
paper, let us digress for a moment and calculate the Heisenberg evolution X, = UtT XUy
of an arbitrary observable X of the atom or cavity mode, as expressed symbolically
in Eq. (14). Using the quantum It6 rules we easily obtain

dx, = %[HA 4 Hac + Hp, X dt +~' Ly, Xy dt + 71 Lo, Xe dt + /A0, X:]dA,  (37)

V(X0 bi) AL + ATlo], Xi) dA, + ALIX, 0] dA]
where £.X = ¢! Xc — 3(cTeX + Xcfe) is the well-known Lindblad term. As the
expectations of It6 integrals vanish, clearly averaging away the noise terms (“tracing
over the bath”) results in a Lindblad-type master equation in the Heisenberg picture,
which is ubiquitous in the description of quantum open systems (see e.g. [26]). In the
language of quantum probability, the unitary solution U; of the quantum It6 equation
provides a unitary dilation of the associated Lindblad equation [36].

We now introduce a highly simplified model of an atomic ensemble interacting
with an electromagnetic field [69,70]. Consider an atomic ensemble consisting of a set
of N atoms with a degenerate two-level ground state. We will assume that all atomic
transitions are far detuned from the cavity resonance, so the interaction between the
atoms and the cavity is well described by the dispersive Hamiltonian H 4o = hxF.b'b
where F, is the collective dipole moment of the ensemble, i.e. it is a spin-N/2 angular
momentum operator, and x determines the coupling strength. Such a Hamiltonian can
be obtained, for example, by considering the full dipole coupling and then adiabatically
eliminating all the excited states. We furthermore consider the atomic Hamiltonian
Ha = hAF, + Rh(t)F,, where A is the atomic detuning and h(t) is the strength of
a magnetic field in the y-direction. The latter will allow us to apply feedback to the
system by varying the external magnetic field. We obtain

dU; = |V bdA] — /7 b dA, + VAT 0 dA] — AT ot dAy - Syiotodt
— 3/bbdt — i(AF. + h(OF, + XFb'b+ E(b+ b)) dt| Uy (38)

Adiabatically eliminating the cavity [19,24,74], assuming that 7' and £ are sufficiently
large so this is a good approximation, yields

dU, = |71 o dA] — /AT ot dA, + VM F.(dA] — dA,) (39)

~tyiotodt — SMF2dt —i(3E + A)F, dt — ih(1)F, dt} U,
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where M = 16x2E2%/(y')? is the effective interaction strength. It is convenient to
choose the atomic detuning A = —4x€2/(y")?, and we will henceforth assume that
this is the case (experimentally we can always fix the detuning by applying a magnetic
field in the z-direction.)

Finally, we will for simplicity neglect spontaneous emission by setting v, =0, a
good approximation if v; <« M (in this case the interesting system dynamics takes
place long before spontaneous emission sets in.) This gives

dU, = |VM F.(dA] — dA;) — LMF2 dt — ih(t)F, dt} U, (40)

We will use this highly simplified model as an example throughout the remainder of
the article.

4. Conditioning: classical probability and quantum filtering

In the previous section we considered in detail the physical interactions between an
atomic ensemble and the electromagnetic field, which, after many simplifications,
were condensed into Eq. (40). This expression contains all the physical dynamics
of our model. We now start the second step in our program, in which we perform
statistical inference of the atomic dynamics based on an observation of the field. Our
approach [71] is inspired by [5,7].

4.1. Optical detection

Before we can derive a filtering equation we must specify what measurement is
performed. We will consider the case of (balanced) homodyne detection, which
measures a quadrature of the outgoing field. The principles of this method are
discussed in many textbooks [62, 73] and a continuous time description in terms
of quantum stochastic calculus can be found in [3]. Homodyne detection has
the advantage that it gives rise to a continuous, Wiener process-type integrated
photocurrent, which is particularly convenient for continuous time feedback control.

Other types of detection may be convenient in different situations depending on
the experimental setup. For example, the spin squeezing experiment [30] makes use
of polarimetry, which can be modeled in a very similar way as homodyne detection.
Though photon counting detection also has a continuous time description in terms of
quantum stochastic calculus, it gives rise to a discrete jump process which is much
less convenient for the purpose of feedback control.

Heuristically, consider Eq. (40) as being driven by the white noise a¢, the
“derivative” of A;. An ideal wide-band homodyne detector will measure the field
observable a; + aI after the field has interacted with the ensemble; i.e., we observe
the photocurrent I(t) = U/ (a; + al)U,. As usual mathematically rigorous results are
much more easily obtained in integrated form; hence we define as our observation the
integrated photocurrent

Y, = UJ (A + AU, (41)

where I(t) can be considered the “derivative” of Y;. For a rigorous treatment directly
from the quantum stochastic description we refer to [3].

Finding an explicit expression for Y; is a straightforward exercise in the use of
the quantum It6 rules. From Egs. (40) and (41) we directly obtain

dY; = 2V M U] F.U, dt + dA; + dA] (42)
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Thus clearly homodyne detection of the field provides a measurement of the system
observable F,(t) corrupted by the incident field noise.

We will extend our observation model a little further. We assumed in the above
analysis that the detection efficiency is perfect. In practice there will always be some
technical noise added to the signal, either due to the intrinsic loss mechanisms in the
photodetectors or due to noise in the detection electronics (e.g. amplifier noise). We
will model these effects by the addition of an uncorrelated white noise term dW, to
the observation current; i.e.

dY, = 2/Mn U] F.U, dt + /7 (dA, + dA]) + /T — 5 dW/ (43)
where 1 € (0, 1] determines the relative strength of the technical noise (n = 1 is perfect
detection.) We can interpret the white noise dW} as an operator process by embedding
it in a quantum probability space, e.g. dW/ = dB; + dB;f for some uncorrelated field
B; that does not interact with the system. Note that we have rescaled the current
Y; so that the total corrupting noise has unit variance, i.e. dY,> = dt; this gives a
convenient normalization of the photocurrent. Experimentally the observed current
will have some arbitrary amplification.

In order to make sense as an observed current Y; must be a classical stochastic
process, i.e. [Y;, Y] = 0 Vs # t; clearly any sample path recorded in the laboratory is
classical. From Eq. (43), however, it is not at all obvious that this is the case. Once
again we resort to a heuristic argument which can be made rigorous in a detailed
treatment of quantum stochastic calculus. Eq. (40) implies that the observable a;
only interacts with the system at time ¢. As a; is independent from as when t # s, it
follows that U/ asU; = Ula,U, Vt > s. But then [1(t), I(s)] = U/ [as+a], as+al]U; = 0,
as we have already established that a; + aI is entirely classical white noise. Hence Y%,
the integral of I(t) plus technical noise, is also a classical stochastic process.

There is another property of the observation, called the nondemolition property
by Belavkin [6], that is essential in what follows. Let X be some observable of the
atomic ensemble. Then it is easy to show, in exactly the same way we showed that
Y; is a classical process, that [UQLXU,g7 Ys] = 0 Vs < ¢; i.e., any system observable at
time ¢t commutes with all prior observations. This means, as we saw in section 2.2,
that finding the best estimate of a system observable given all prior observations is
an entirely classical statistical inference problem. We will find the explicit solution to
this problem, the quantum filtering equation, in the next section.

4.2. The quantum filter

Let us begin by establishing some notation. If X is an atomic ensemble observable,
denote by ji(X) = U/ XUy its Heisenberg evolution at time ¢. Using Eq. (40) and the
quantum It6 rules we easily obtain

dji(X) = ji(L[X])) dt + VM ji([X, F.]) (dA] — dA,) (44)

where L[X] = ih(t)[F,,X] + MF.XF, — M(F?X + XF?). We have already
established the observation equation

dY; = 2\/Mn ji(F,) dt + /7 (dA, + dA]) + /1T =5 dW} (45)
Together, Eqgs. (44) and (45) form the system-observation pair of our model. Eq. (44)
describes the time evolution of any system observable, whereas Eq. (45) describes
the observed current. The goal of the filtering problem is to find an expression
for m,(X) = E[:(X)|Ys<¢], the (least mean square) best estimate of the observable
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X given the prior observations Y;<;. An essential point is that the conditional
expectations 7, (X) are guaranteed to be well-defined by the nondemolition property.

Due to the nondemolition property we could in principle simultaneously
diagonalize j;(X) and Y;, s < t for every X, drop down to the associated classical
probability space, and calculate the classical conditional expectation m;(X). This is
not a very practical course of action, however, so we will need a shortcut. Moreover,
our description of the conditional expectation in section 2.1 was rather limited: we
only defined the conditional expectation with respect to one discrete random variable,
whereas Y,<; is a continuous family of continuous random variables. To manipulate
such continuous quantities one needs the mathematical machinery of real analysis.

We take the following approach. From the definition of conditional expectation
is section 2.1 we can extract the following properties:

(i) E[X|Y] is a function on Y.

(ii) For any random variable Z that is a function of Y, we must have E[E[X|Y]Z] =
E[XZ].

It is easy to see that the definition of section 2.1 implies these properties, and it is
not hard to show that the converse is also true. In the continuous case we just take
these properties as the definition of conditional expectation. This is precisely the real
analytic definition, where the intuitive idea of being “a function of Y is replaced by
the notion of measurability [75].

We are now ready to take our shortcut. By property (1), (X ) must be a function
of Ys<;. Introduce the ansatz

dm(X) = Cy(X) dt + Dy(X) dY; (46)

where C;(X), D;(X) are functions of Ys<; to be determined. If we can determine C
and Dy, the filtering problem has been solved.
To implement property (2) we use the following trick. We require that

E |:7Tt(X) efor Q(S)dYS:| —E |:.]t (X) efot g(s)dYs (47)

for any function g(t). The idea behind this is the same as that of a moment generating
function: we can generate any (analytic) function of Ys<; by using an appropriate g(t)
and taking derivatives. Hence, if we have proved the relation (47) then we have
essentially satisfied property (2).
What remains is mostly a direct apphcatlon of the Ito6 rules. For convenience we
multiply both sides of (47) by exp(— fo 5)2ds). Define
el = eJo 9(8)dYe=3 [§ 9(s)*ds def = g(t)e] dY; (48)

It is now straightforward to evaluate
dE[e?m (X )
PRI~ 1o (U(X) + 2/ (P2 Du(X
+g(t)ef (Dy(X) + 2v/Mmn ji(F. X))] (49)
dE[e ji (X)]

DI — Bl £0X) + /M g(0)ef (P X + X)) (50)

We now invoke Eq. (47) and attempt to find C¢(X), D¢(X) by comparing (49) and
(50) term by term. We run into a snag, however, as a naive comparison would yield
Cy and Dy in terms of ji(F;), etc., which are not functions of Y;<;. Fortunately we
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can use property (2) of conditional expectations to change all the j; terms in (49) and
(50) to the corresponding m; terms (E[j:(-)] = E[m(+)], etc.) This gives immediately

dry(X) = m(L[X]) dt + /M (7 (F. X + XF.)
—2m,(F.)m (X)) (dY; — 2+/Mnmy(F,) dt) (51)

which is the quantum filtering equation for our model.

It is instructive to recall the example of section 2.2. There a simple filtering
scenario was constructed by coupling a spin to a commuting observable, then
conditioning the spin observables on the commuting observable. This gave rise to a set
of classical random variables, representing the conditioned spin observables. Similarly,
we have coupled an atomic ensemble to an optical mode and conditioned the atomic
observables on a homodyne measurement in the field. This gave rise to a classical Ito
equation (51) for the conditioned atomic observables, driven by the observations Y;.

As in section 2.2 we will find it useful to represent the filter in its adjoint (density)
form. To this end, we define the conditional atomic density matrix p; as the random
matrix that satisfies 7 (X) = Tr[p: X]. Eq. (51) gives

dpy = —ih(t)[F,, pi| dt + M D[F.)p; dt + /MnH[F.]p; dW;  (52)
where we have used the notation

Dlclp = cpc’ — (cTep + pele) /2 (53)

Hlclp = cp+ pet = Tr[(c+ cNplp (54)
and we have defined the innovations process

dW, = dY;, — 2\/MnTx[p,F.] dt (55)

An important result in filtering theory is that the innovations process W; is in fact a
Wiener process [6,12]. Though we have not introduced sufficient technical machinery
to prove this fact, we can can give a simple interpretation. We can write W; in the
form

AW; = 23/ M) (jo(F.) =i (F.)) di+ /7 (dA;+dA]) ++/1 — 5 dW/ (56)
This expression consists of two parts: the last two terms are white noise terms, whereas
the first term is the difference between an atomic observable and our best estimate of
that observable, i.e. it represents the new information (the “innovation”) contained in
the measurement.

4.8. Conditional spin dynamics

Before we add control to the picture it is interesting to take a look at the open-loop
properties of the filtering equation (52), i.e. without feedback, by setting h(t) = 0.
The equation propagates a density matrix, defined as the adjoint of a set of classical
conditional expectations, which carries the interpretation of the “statistically inferred”
density matrix of the ensemble given the observations in the probe field. One
might wonder how such a picture is related to the traditional picture of quantum
measurements.

To illustrate the filtering process we have simulated Eq. (52) for a spin F = 5
ensemble (e.g., 10 two-level atoms) [66]. Such simulations are highly simplified by the
fact that the innovations process is a Wiener process. This means that we do not
have to simulate the full quantum-mechanical model, Eqgs. (44) and (45), to obtain
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Figure 2. (a) Time evolution of the conditional state from a coherent spin state at t = 0 to an
eigenstate at long times. The graph shows the population of each F. eigenstate. (b) 100 sample
paths of m¢(F:), with M = n = 1. The dark line is the sample path shown in (a), resulting in
m; = 1. Von Neumann projection is clearly visible at long times.

a photocurrent Y; to drive (52). Instead, we just plug in a Wiener process for the
innovations, for which straightforward numerical methods are available. The results
are shown in Fig. 2.

At long times the conditional state is clearly driven to one of the eigenstates of F,,
i.e. Dicke states [17], just as predicted by the Von Neumann projection postulate. In
fact, it can be rigorously proved that the ¢ — oo limit of Eq. (52) is ezactly identical
to the projection postulate, i.e. the probability of collapse onto each eigenstate is
predicted correctly by the filtering equation [2,66,71].

Note that we have not previously mentioned the projection postulate in this
article. As this result follows from our theory we do not need to postulate it: instead,
we have “derived” it using quantum dynamics and classical statisticsq. In some
sense the filtering process exposes the anatomy of a quantum measurement. We
have explicitly modeled the coupling between the probe field and the system under
measurement, Eq. (44), and we considered separately a step that involved purely the
gain of information. Both processes conspire to bring about the traditional projection
of the system state in the long-time limit.

At intermediate times, ¢ < oo, the conditional state gradually collapses onto
the F, eigenstates. This process, for a single sample path, is shown in Fig. 2a.
Whereas a Von Neumann measurement would take the state discontinuously from
the initial state to the final collapsed state, the filtering process continuously narrows
the distribution over the eigenstates until only one remains. Aside from giving a more
realistic description of continuous optical measurements, this description creates an
opportunity that has no analog with projective measurements: we can interfere with
9 The reader should not get the impression, however, that we have now reduced all the peculiarities
of quantum measurement to pure classical probability. In particular, we cannot derive why the
measurement of an observable rules out the measurement of noncommuting observables, which has
no counterpart in classical probability. Only the conditioning, which takes place after a measurement
has been performed and the measurement result has been obtained, can be given a purely classical
interpretation in this way as a statistical inference procedure. On the other hand, the “back action”

on the system is caused by the quantum dynamics of the interaction between the system and the
probe, which we have explicitly modeled by a quantum stochastic differential equation.



Modeling and feedback control design for quantum state preparation 22

the collapse process while it is occuring by applying real-time feedback.

Finally, we should remark that not all filtering equations give rise to Von-
Neumann type collapse. For example, homodyne detection of spontaneously emitted
photons, or an atomic ensemble resonantly interacting with the probe field, will result
in continuous decay of the conditional state into the ground state. Projective dynamics
is obtained in our case because of the dispersive (off-resonant) interaction of the
ensemble with the probe and the neglect of spontaneous emission. The latter can
be justified, however, if there is a large separation of time scales between the time
of collapse and the time at which the spontaneous emission sets in. In this case, the
intermediate regime will be very similar to the long-time limit of our model.

The range of dynamics emerging from filtering equations highlights the need for
the separate modeling of the system-probe interation. Though we have only presented
a very simple model, we have outlined a bottom-up approach in which the system-
probe interaction is modeled from first principles using quantum electrodynamics.
The detailed modeling of realistic experimental configurations will be invaluable for
quantitative comparison of theoretical predictions and experimental data [28].

5. Feedback control and quantum state preparation

The intrinsic randomness of quantum measurement should not dissuade the capable
observer from trying to control the dynamics of a system. In fact, it should do just
the opposite. The inherent uncertainty in observation is the inspiration for the use of
feedback control, and promotes it to the status of fundamental.

Although the physical constraints imposed by quantum mechanics are
performance limiting, quantum feedback control problems are well defined and worth
pursuing for all of the same reasons engineers use control on classical systems.
Furthermore, quantum feedback control, while technically difficult, is simply a branch
of traditional control and amenable to the techniques developed therein [4, 18, 71].
Far from introducing an entirely new kind of problem, the challenges presented here
highlight and motivate the extension of mathematical methods already in development
elsewhere.

In this section we begin by discussing the types of problems and structure
encountered in a typical quantum feedback control scenario, building upon the
formalism developed above. Here we use language from classical control theory, and
discuss the possible application of optimal and robust control theories to the quantum
setting. We also emphasize experimental constraints which motivate simplifications
of desired controls through model reduction. Next we demonstrate the utility of
feedback in a review of applications to atomic ensemble experiments. We finish by
focusing on the particular theoretical example of deterministically preparing a state
with continuous measurement and control.

5.1. Defining feedback control

The term “quantum feedback control” as used in this article refers to a particular class
of problems that should be distinguished from other types of control with quantum
systems. The class we consider involves the measurement of a quantum system by
interaction with a quantum field. The field is destructively measured resulting in a
classical measurement record. That measurement record is then processed and fed
back to Hamiltonian parameters affecting the same system.
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The rest of this article is concerned with problems of this kind. However, it
should be noted that there exist further types of control with this arrangement that
we will not discuss. Aside from actuating Hamiltonian parameters of the system with
feedback, the observer may possess the ability to adaptively change the measurement
itself according to the measurement record. This leads to different “unravellings” of
the dynamics [79]. By the nature of the measurement, the ensemble average behavior
of the system will be the same for any chosen unravelling or adaptive measurement
scheme. Of course, the same will not be true for the average trajectory behavior of
the system under different Hamiltonian control laws.

Additionally, there exist completely different types of control with quantum
systems bearing little resemblance to the measurement techniques discussed here. For
instance, one can imagine doing a type of feedback experiment where, instead of
destructively measuring the ancilla system, it is returned to interact with the system
of interest again, and possibly repeatedly. For the case of the usual optical ancilla
system, this has been referred to as “all-optical feedback” to distinguish it from the
electrical measurement signal alternatively produced [81]. In certain cases this kind
of “coherent control” [52] can achieve state preparation goals with minimal processing
overhead and delay. In the formalism presented here, one could describe such a process
completely at the quantum stochastic level of section 3.

Finally, the term “quantum control” is also used in the literature to refer to
yet another scenario, with not one system, but an ensemble of identically prepared
systems. Here a system is driven with a pulse, then the result is measured.
Subsequently, another system is prepared, another pulse is used to drive it, the result
is again measured, and so on. In between trials, the pulse shape is changed based
on the previous measurements in some algorithmic way to optimize the effect of the
pulse [61]. This procedure is a type of “learning control” and, unlike in the examples
we study, no feedback occurs during the lifetime of an individual system.

5.2. Separation structure

Generally speaking, the control problem consists of finding a mapping of the
measurement record onto the actuation variables such that some pre-defined task
is achieved. When stated in this way the problem is very difficult to solve; after all,
when we allow any functional from the photocurrent history to the control variables,
it is hard to know where to start.

Fortunately we can simplify the problem description considerably using what is
sometimes referred to as the separation principle or the information state approach,
originally introduced in classical control theory by Mortensen [57]. The basic idea
behind this approach is that we can never control the system more precisely than
the precision with which the system state can be inferred from the observations. In
many ways this is a statement of the obvious: for example if we know that the system
is controlled to within some bound, then clearly we can infer that the system state
is within that bound. As a consequence, the best we can do is to control the best
estimate of the system state, i.e. the conditional state.

The advantage of this approach is that we have converted the output feedback
control problem into a state feedback control problem for the filter. Operationally, we
then consider the filtering equation (52) as our new “effective” dynamical equation
to be controlled, where the feedback h(t) can now be taken to be a function of the
conditional state p; as opposed to the measurement record. This is a less constrained
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Figure 3. Schematic of the entire feedback control problem for an atomic ensemble. On the
experimental level an ensemble interacts with a probe field, as described by Eq. (44). Homodyne
detection gives rise to the photocurrent (45), which is processed by a digital controller. A magnetic
field is used for feedback. On the controller level, the photocurrent drives the quantum filter (51)
which updates recursively the best estimate of the atomic state. The control law is a functional of
the current conditional state. The innovations structure (55) allows the control design to be based
directly on the filtering dynamics.

problem than the output feedback problem and hence often easier to solve. Control
design is further simplified by the fact that the innovation, Eq. (55), is white. This
means we can consider Eq. (52) as an ordinary Itd equation to be controlled, without
separately modeling the statistics of the photocurrent driving noise.

The structure of the entire control setup, in the context of the model discussed
in the previous sections, is shown in Fig. 3. The atomic ensemble and its interaction
with the optical probe field and the magnetic control field was modeled in section 3.
Homodyne detection was the subject of section 4.1. The photocurrent is processed
by a digital control circuit which produces the feedback signal. Inside the controller,
the “whitened” photocurrent drives the quantum filter, as described in section 4.2.
The control law is a function of the best estimate of the system state. To design the
control law, however, we only need to consider the “internal” feedback loop inside the
digital circuit. From the controller’s effective perspective, the only role of the physical
experiment is to provide the innovation dW;, which is white by construction.

5.3. Defining an objective

We have separated the control design into an estimation problem, which was the
subject of section 4.2, and a control problem. The control problem is undefined,
however, until we state a goal that our controller should achieve.

As an example, an experimentalist may want to minimize some functional of the
system and control variables, e.g.,

Clhe) = [ ((F2) + uh(t?) e (57)

where p is a parameter that limits the degree that the control input is applied. To
apply the separation principle to this case we must first convert the cost function
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C into a form which is only a function of the filter state. This is straightforward,
however, due to the property Ej;(-) = Em(-) of conditional expectations: we obtain

Clhe) = [ (ma(F2) + uhle?) at (58)

As expected, the control goal depends only on the conditional state, i.e., the filter
state is a sufficient statistic for this control problem.

In principle, the minimization of (58) using the dynamics of the filtering equation
would produce a control law which is the optimal time-dependent mapping of the
conditional state onto the control parameters. This type of problem is known as
“optimal control”, and is one of the primary modes of thought in classical control
theory [8,20,38]. As is apparent from Eq. (52), the general form of the filtering
equation is non-linear in the state and, as an unfortunate result, the optimal control
solution is extremely difficult to find. Although both non-linear and stochastic control
theories are well developed fields classically, there is still much work to be done in their
intersection.

Fortunately, there are alternative methods for gaining ground on the quantum
feedback control problem. First, in some instances, it is possible to linearize the
dynamics of the filtering equation via moment expansions. In this case, one can
readily adopt “LQG” techniques from classical control [8,38] for linear systems (L),
a cost function quadratic in linear observables and control variables as above (Q),
and Gaussian dynamics (G), to solve the problem completely [4,18,19,65]. In any
given example, the needed linearization may only work for particular initial states
and limited periods of time, but the LQG results can still be remarkably far reaching.

Second, we can choose to be less demanding of our controller, and instead
formulate a non-optimal goal. For instance, suppose we are interested in preparing
the quantum state p. at long times. The control goal can then be formulated as find
a control law h(t) so that E[j;(X)] — Tr[Xp.] ast — oo for any system observable X .
As above, it is easy to see that the filter state is a sufficient statistic and hence we can
directly apply the separation principle. In particular, if we can find a controller that
makes p. a global (stochastically) stable state for the filter dynamics, the eventual
preparation of p. is ensured. Although the state might not be prepared as fast as is
physically possible, it is an accomplishment to know that it will eventually be prepared
with unit probability. Here there is much work to be done on constructively generating
controllers and methods for proving the stability, but progress has been made for some
simple problems [71].

5.4. Robustness and model reduction

If given the choice between a controller that works optimally under one set of ideal
circumstances and a controller that works sub-optimally, but adequately, over a wide
set of possible conditions, the wise experimentalist would always choose the latter.
Due to unexpected modeling uncertainties and exogenous noise sources, the optimal
control approach has the potential to fail catastrophically in realistic environments, a
possibility that has motivated the development of “robust control” for many years [84].
One could say the reason experiments are performed at all is to test the robustness of
our model and control design.

The concept of robust control has been extensively studied in the classical
deterministic setting, but the same logic holds true for quantum applications. Even as
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quantum technology reaches its limits, there will always be some degree of non-intrinsic
system uncertainty to which the system should be robust. Not surprisingly, quantum
feedback techniques have been shown to enable robustness to model uncertainty in
metrology applications [65]. Of course one need not draw the line too sharply between
optimal and robust control, as there exist types of risk-sensitive optimal quantum
control that inherently consider certain kinds of robustness [39, 40].

Another practical reason why optimal control may not be ultimately relevant is
that real-time information processing takes time. Even if the modeling is perfect and
there are no excess noise sources, an optimal controller may not work due to processing
constraints. If the processing delay of the actual controller is large compared to the
relevant time-scale of the filtering dynamics, then another approach will be needed.
Despite the improving performance of programmable logic devices that might best
implement the optimal control, there are few experiments with slow enough time-
scales that modern electronics can be optimally effective at real-time estimation and
control [64].

Clearly it is of significant interest to be able to derive a controller that works
without having to evolve the full filtering equation in real time. Recognizing this,
physicists have proposed and used controllers for quantum feedback applications that
use a simplified control law which bypasses the full state estimation. Even more easily,
one can sometimes feed the measurement record directly back to the system with a
gain tailored intelligently in time [69,77,80]. However, with any of these approaches,
one must be cognizant of realistic gain and bandwidth constraints. For example, one
cannot realistically feed pure white noise back into a system, as this would imply
infinite sensor and detection bandwidths. Although most of the simplified quantum
controllers suggested in the literature have been constructed through more or less
heuristic means, we expect the continuing development of these techniques to resort
to more mathematical notions of model reduction, where the degree of approximation
and its effect on the feedback performance can be more explicitly quantified.

5.5. Measurement and Feedback in Atomic Ensembles

When considering systems with the potential for interesting applications related
to quantum information processing, there exists a natural tendency within many
physicists to consider conceptually simplified systems, e.g., a single atom or ion. While
much progress has been made in trapping, measuring, and controlling single particles,
it has also been realized for some time that the use of atomic ensembles does not
preclude the observation of uniquely quantum effects nor a simple description. As
compared to alternative systems, ensembles are experimentally convenient and, by the
sheer number of participants, sufficient signal can be generated to make them powerful
in quantum applications, with atomic clocks being just one prominent example.
Here we consider those experiments where continuous measurement and feedback
have been used to generate entanglement either within or between atomic ensembles.
We begin by discussing the use of dispersive measurement to produce a spin-squeezed
state in a single ensemble in the short-time limit, and how feedback can be used to
make this process deterministic. We then focus on a particular theoretical limit where
the linear approximation fails, but still highly entangled eigenstates of the measured
F. can be prepared by using the more complete filtering equation and an intuitive
feedback law. Finally, we briefly discuss experiments and proposals involving the
creation of entanglement between two ensembles with and without feedback.
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5.5.1. One Ensemble For state preparation with atomic ensembles, spin-squeezed
states (SSS) [44] are natural target states. These collective spin states are internally
entangled, simply characterized by measured moments of the spin-operators, and
useful in metrology tasks [29,65,76]. For an ensemble with N spin-f particles and
collective angular momentum operators F;, a state is defined as spin-squeezed, and
entangled, if"

2fN(AF2)
(Fr)?

where the spin-state is pointing along x so that (F,) = F = N f and (Fy) = (F,) =0
[63]. Methods to produce these states typically begin with an unentangled coherent
spin state (CSS) with all spins exactly polarized along the z direction and realizing
the equality of the uncertainty relation
2 2

@arg)ar) > T (60)
For the SSS, the equality is roughly maintained with one component (AF?) squeezed
smaller than the CSS value and the other (AF?) anti-squeezed.

There are many ways one can imagine producing the spin-correlations within
the ensemble needed for the collective state to be squeezed. Examples include using
direct Hamiltonian interactions [63] and also transferring correlations from an auxiliary
system, e.g. squeezed states of light [34,49,56]. We shall focus on the production of
spin squeezed states via dispersive measurement, the effects of which were originally
discussed and demonstrated in references [47,48]. Subsequently, Thomsen, et al. [69]
proposed a feedback procedure, discussed below, that used a measurement based field
rotation to remove the randomness of the measurement while retaining the desired
squeezing effect. Others have proposed using feedback to an optical pumping beam to
achieve a similar result [56]. It has since been experimentally demonstrated that using
a procedure similar to [69] feedback can enable the deterministic production of spin-
squeezed states in cold atomic samples [28,30]. Much work continues in this direction,
in particular towards creating squeezed states with the Cesium clock transition, which
would considerably improve current atomic clock performance [59].

To understand the conditional preparation of spin-squeezed states by dispersive
measurement, consider the apparatus in Figure 3. As shown above, the filtering
equation is given by Eq. (52). This equation is only applicable at long times ¢ > 1/M
if a sufficiently strong cavity is used to suppress the spontaneous emission to an
insignificant level. Given existing experimental technology this is currently unrealistic;
nevertheless we consider the long time dynamics for purposes of demonstration.

The filtering equation was derived using a simplified one-dimensional model of
the interaction. Although this model is often an adequate description of free-space
experiments where a distribution of atoms interacts with a spatially extended probe
beam, there is much interest in making the model more accurate by extending it to
three dimensions. A complete model would consider the scattering process where all
free-space field modes interact with the atomic distribution. Some of those channels
would then be measured, and the results used to condition the atomic state. In this
picture, the conditional entanglement results from the indistinguishability of the atoms
in the measurement and “spontaneous emission” is a term used to describe the effect

<1 (59)

T We will denote by (-) the expectation of an observable in a general sense. The associated state can
be prepared either unconditionally or conditionally.
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of the remaining unobserved channels. A considerable amount of work remains to
be done in describing collective scattering in terms of measurement theory, but much
progress has been made [11,21,46,58].

Returning to the one-dimensional model, we can extract the conditional evolution
equations for the moments of any operator from the filtering equation. Under the
approximation that there are many atoms and the initial collective state is nearly
polarized along the z-direction, we can derive the closed set of equations

dri(F,) =~ Fexp[—Mt/2] h(t)dt + 2/ Mnm(AF2) dW; (61)
dri(AF?) =~ — 4Mnm (AF?)? dt (62)

These equations are obtained by truncating the exact coupled expressions for m(F7),
calculated from Eq. (51), at n = 2 [29,65]. This reduced description is equivalent
to a classical Kalman filter [8,38] and corresponds to a local linearization of the spin
dynamics.

Egs. (61) and (62) are valid only in the short time limit ¢ <« 1/M, past
which the full filtering equation is needed. At longer times terms neglected in the
approximation grow to the point that the variance becomes stochastic [65], and the
moment truncation is no longer a good description. This process can be seen in Fig.
4a, where at small times the variance is deterministic, but then becomes random at
longer times.

The deterministically shrinking variance of Eq. (62) at short times signifies that
a spin squeezed state is prepared with a random offset given by Eq. (61). The idea
of [69] was to choose h(t) o Y; with an intelligently chosen gain such that the first
term effectively cancels the second term in Eq. (61), preparing the same SSS on every
trial. Although this exact procedure cannot be implemented in practice due to the
infinite detector and actuator bandwidths implied by the control law, it was essentially
a similar, but filtered, current feedback law used in the experiment [30]. Because of the
linearity of the dynamics in the short-time limit, the simple current-based feedback
law does not perform significantly worse than a law that changes h(t) more optimally
according to the state m:(F%) [65].

Given these dynamics, another control strategy would be to separate the
measurement and control in time: simply measuring for a finite amount of time,
turning off the probe, and using the measurement result to rotate the spin-squeezed
state to the desired location. However, as pointed out in [69], the continuous feedback
approach is more robust than this procedure to e.g. uncertainty in the total atom
number which is necessary to compute the size of the correcting rotation.

To further demonstrate the utility of continuous measurement and feedback,
we now consider the long time behavior of the filtering equation, past the point in
time ¢t > 1/M when the linearized description fails. As discussed in section 4.3, the
filtering equation stochastically prepares a random eigenstate of F, asymptotically in
time*. In [66] we investigated numerically the performance of particular controllers
at producing one F, eigenstate deterministically on every trial.

Here it is critical to point out that, unlike with the Gaussian spin-squeezed states,
a post-measurement rotation strategy will not work in this regime. If the wrong
eigenstate is randomly prepared in one measurement, it cannot be transformed into
the correct eigenstate by a rotation alone. Furthermore, despite the adequacy of the
direct current feedback law at short times, such a controller is less useful at longer

* There are other schemes that produce superpositions of F, eigenstates conditionally but without
control, based on single photon detection of an ensemble in a cavity [22].
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Figure 4. (a) (AF2)(t) = m(AF2) in open loop h(t) = 0. (AF2)s is the approximate variance of
Eq. (62). (b) (F2)(t) = m(F2) and (c) (F:)(t) = m¢(F;) with the control law (63) and A = 10. Note
that Emi(F2), the cost for preparation of the m, = 0 eigenstate, decreases monotonically. All plots
show 100 sample paths and M =n = 1.

times. As opposed to state-based control, this type of control will feed noise into the
system even if the target state is reached, unless the gain is turned to zero. Although
certain gain-tailored schemes can be made to optimize the feedback at small times [69],
it is not at all obvious how such a procedure could be generalized to the long time
case.

In contrast, if the control variable h(t) is made a function of the conditional state,
then it will naturally know when the goal has been achieved and no longer disturb the
state unnecessarily. Numerically we were able to demonstrate [65] that with an initial
x-polarized state, the control law

h(t) = —Am(F.) (63)

appeared to deterministically prepare the highly entangled state m, = 0 on every
trial, as seen in figure 4. Thus, continuous feedback, in addition to being robust, is
also capable of preparing states on every trial that would be impossible to generate
deterministically with measurement and control pulses separated in time.

Numerical evidence is encouraging, but more analytic statements about the
performance of particular control laws are still desirable. Unfortunately, the more
atoms the ensemble contains, the larger the Hilbert space becomes, and the more
difficult it is to analytically prove that certain states are global attractors under
particular feedback laws. However, as we have shown in [71], there exist methods
adapted from non-linear and stochastic control theory that can prove the global
stability of I, eigenstates for this problem. Although this has only been demonstrated
for few atom systems, there is hope that the techniques can be extended to consider
dynamics on larger Hilbert spaces. Much of the control design process remains
guesswork, but ultimately we desire methodology that allows us to systematically
construct both controllers and proofs that validate those controllers.

5.5.2. Two Ensembles The creation of a collective entanglement within a single
atomic ensemble can be motivated with, for example, the need for noise reduction
in metrology tasks, where the system is used as a relatively localized probe of some
parameter of interest. In other practical applications, like quantum communication,
it is desirable to have an entangled quantum state, but with constituents separated
substantially in space [23]. Indeed it has been experimentally demonstrated that by
detecting a single probe beam after it passes through two spatially separate atomic
ensembles, the two ensembles can be made conditionally entangled [41].
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Just as single-mode spin squeezing can be quantified with the collective variables
for the one ensemble, here the “two-mode” squeezing can be quantified with the joint
collective operators describing both ensembles. Furthermore, in analogy to the work
of [69], the random offset observed in the measurement process can in principle be
eliminated with a suitable feedback law to deterministically produce the same two-
mode spin squeezed state on every trial [9].

In a related context, it has recently been experimentally demonstrated that the
two-ensemble system may serve as an effective quantum memory for states of light [42].
This procedure differs from the deterministic state preparation discussed previously
in that the state of light to be mapped onto the ensembles is not known beforehand.
However, the procedure described in [42] is similar in that it does use feedback to
rotate the Gaussian ensemble state in a way that maps one measured quadrature of
the optical state onto the atoms, while the other unmeasured quadrature is mapped
unconditionally by the interaction alone. Clearly, this process shares many of the
same properties as the applications discussed previously and can similarly benefit from
analyses with technical notions of robustness and optimality. Finally, this procedure
becomes even more efficient if the input atomic state is a two-mode squeezed state,
which highlights yet another practical application of deterministic entangled quantum
state preparation.

6. Conclusion

In this article we have attempted to give a unified picture of a quantum feedback
control setup. Starting from elementary physical interactions, as described by a field-
theoretic model, we first performed statistical inference on this model, and then used
this framework to develop feedback control strategies for state preparation in atomic
ensembles. The latter is directly related to recent experimental work which we briefly
summarized. It is our hope that such a unified picture will help linking the basic
physics and experimental reality to a high-level, control-theoretic point of view.

Many open problems remain on both ends of the spectrum. On the physics side
much work remains to be done on the realistic modeling of laboratory experiments.
Ultimately a full three-dimensional field-theoretic model will be invaluable for
quantitative comparison of theory and experiments. On the control-theoretic side
many of the techniques that have been used are still heuristic in nature. Systematic,
constructive design methods for nonlinear stochastic controllers, the incorporation of
realistic robustness criteria, and efficient model reduction techniques with controllable
approximation errors are some of the major outstanding issues. We believe that a
fruitful interaction between the physics and mathematical control theory communities
will open the road to significant advances in these directions.
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We show that superselection rules do not enhance the information-theoretic security of quantum crypto-
graphic protocols. Our analysis employs two quite different methods. The first method uses the concept of a
reference systemin a world subject to a superselection rule, unrestricted operations can be simulated by
parties who share access to a reference system with suitable properties. By this method, we prove that if an
n-party protocol is secure in a world subject to a superselection rule, then the security is maintained even if the
superselection rule is relaxed. However, the proof applies only to a limited class of superselection rules, those
in which the superselection sectors are labeled by unitary irreducible representations of a compact symmetry
group. The second method uses the concept ofdtmeatof a message sent between parties—by verifying the
format, the recipient of a message can check whether the message could have been sent by a party who
performed charge-conserving operations. By this method, we prove that protocols subject to general superse-
lection rules(including those pertaining to non-Abelian anyons in two dimengians no more secure than
protocols in the unrestricted world. However, the proof applies only to two-party protocols. Our results show
in particular that, if no assumptions are made about the computational power of the cheater, then secure
qguantum bit commitment and strong quantum coin flipping with arbitrarily small bias are impossible in a world
subject to superselection rules.

DOI: 10.1103/PhysRevA.69.052326 PACS nuniber03.67.Dd

I. INTRODUCTION The purpose of this paper is to answer Popescu'’s intrigu-

The central aim of modern cryptography is to formulateNd question. Sadl_y, our conclusion is tha_t superselection
rules can never foil a cheater who has unlimited quantum-

protocols that achieve cryptographic tasks witbhmputa- ional
tional security meaning that a dishonest party would need tocoMputational power. . .
In the case of quantum bit commitment, and other two-

perform a prohibitively difficult computation to break the X o
protocol. A major goal of quantum cryptography is to formu- Pty protocols, our argument hinges on a quite simple ob-

late protocols, involving the exchange of quantum states, thaﬁervatilonf. '”Ia tvx;o—party protogolﬁ onehparticip.emice) hgs
achieveinformation-theoretic securitymeaning that even an control of a local systen#, and the other participanBob)

adversary with unlimited computational power would be un-rr;]aessggngzl g{eamrcithh;[rtg%cal ;gztgncl(nai%d;gﬂﬂ' Itrr:%r:cﬁ sa}[e
able to defeat the protoc{l]. Information-theoretic security ge sy yp : P

(sometimes called “unconditional securifyfias been estab- of the protocol, one party performs a joint quantum operation

. A . on her/his local system and the message system, and then
lished for quantum key distribution protocg-7] but it has sends the message system to the other party. Suppose that in

also been shown that, even in the quantum worldescp step, any part of the full systeABM that is beyond
information-theoretic security is not attainable for certainajice’s control is under Bob’s control and vice versa—no

tasks. For example, unconditionally secure quantum bit compart of the full system is inaccessible or in the possession of
mitment is impossibl¢8,9], as is(strong quantum coin flip- 3 third party. Suppose further that the full syst&®M has
ping with arbitrarily small biag10,11. trivial total charge(belongs to the trivial superselection sec-
Superselection rules are limitations on the physically retor). Then at any stage of the protocol, the algebra of opera-
alizable quantum operations that can be carried out by a locaions that Alice can perform is theommutanbf the algebra
agent. For example, it is impossible to create or destroy anf operations that Bob can perform; that is, Alice’s algebra
isolated particle that carries locally conserved charges, suatontainsall operations that commute with Bob’s algebra.
as an electrically charged particle, a fermion,(ior a two-  Likewise, Bob’s algebra is the commutant of Alice’s. By a
dimensional mediuman anyon. Recently, Popesfl?] has  minor extension of the standard argument, it then follows
suggested that superselection rules might have interestirthat unconditionally secure quantum bit commitment is im-
implications for the security of quantum cryptographic pro- possibleif the total charge shared by the parties is trivial.
tocols. The intuitive idea behind this suggestion is that su- Now, if the total charge imontrivial, then Alice’s algebra
perselection rules could place inviolable limits on the cheatis surely a subalgebra of the commutant of Bob’s, but it may
ing strategies available to the dishonest parties, thube aproper subalgebra; similarly, Bob's algebra may be a
enhancing security. Might, say, unconditionally secure bitproper subalgebra of Alice’s. This unusual property of the
commitment be possible in worldgerhaps including the local operations seems to open new possibilities for the de-
physical world that we inhabitgoverned by suitable super- sign of quantum protocols. Regrettably, though, there is no
selection rules? An affirmative answer could shake the founway for an honest party to ensure that the total charge is
dations of cryptography. really nontrivial when the other party is dishonest. Though

1050-2947/2004/68)/05232620)/$22.50 69 052326-1 ©2004 The American Physical Society
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the honest protocol may call for the parties to start out withrity), then if charge is conserved, Alice and Bob hold conju-
nontrivial charges, we may always imagine that there argjate charges at each stage of the protocol. Therefore, Bob
actually compensating charges beyond the grasp of Alice anglways knows what charge Alice is supposed to have, which
Bob, so that the total charge of the world is really trivial. constrains the type of message that Alice can send to Bob if
Furthermore, a cheater might seize control of the compensaty,« is honest. When Bob receives a message he can verify its

ing charge, while for an honest party it makes no difference ., ‘checking whether the message could have been sent
whether the compensating charge is present or not. It follow: . .
y a party who performed a charge-conserving operation,

that a protocol that calls for the total charge to be nontrivial . Y .
P 9 d he can abort the protocol if the verification fails. There-

can be no more secure than one in which the total charge it th L end v, Alice has b f d
actually trivial; we conclude again that unconditionally se-Ore. if the protocol ends normally, Alice has been forced to

cure quantum bit commitment is impossible, irrespective of@SPect charge conservation—her power to flout the superse-
the value of the total charge shared by the parties in thgacnon_rule does not enhance her z_ablhty to fool Bob. This
honest protocol. reasoning shows that superselection rules cannot thwart
Aside from quantum bit commitment, we will also study cheating, but because the argument relies on the property that
the impact of superselection rules on the information-Alice and Bob hold perfectly correlated charges, it works
theoretic security of a broad class of other quantum protoonly for two-party protocols.
cols, using two different methods. We analyze in detail the For cryptographic protocols with more than two parties,
important special case in which the superselection sectosnd for general superselection rules, new subtleties arise. In
can be identified with the unitary irreducible representationswo spatial dimensions, general charges are not merely lo-
of a compact symmetry group. In that case, we argue that i¢ally conserved, they may also have nontriviaiaiding
is possible in principle to prepareraference stat¢hat es-  properties—the exchange of two charges may induce a non-
tablishes a preferred orientation in the symmetry group. Ayrivial transformation on their joint Hilbert space. This means
party with access to the reference state can use it to perforfaat the effect of sending a message from one party to an-
operations that are ostensibly forbidden by the superselectioftner can depend on the path along which the message trav-
rule. In particular, consider am-party quantum protocol g|g |t is an interesting problem to specify appropriate defi-
where up tok<n of the parties are dishonest, and SUPPOS&,jsinns of security for protocols in this setting, but we will

that in a world with no superselection rules the dishones,q aiemnt to address this issue here. For the special case of
parties have a cheating strategy that breaks the protoco&.narges labeled by unitary representations of compact

Then, even in a world with superselection rules, the dishon- . ) o ;
est parties, by sharing a suitable reference state, can simuIagézlép\?v’etgznbﬁg:ngeprﬁ?lﬁrt:rts arreogé'(\:/(')?;’ vtvr;tehrglj?rsOIr?fr:)hnT
this cheating strategy faithfully. We conclude that if a quan-. y party p

- : ; : h questions.
tum protocol is information-theoretically secure in a world "9 SUC . . .
with a superselection rule, the security will be maintained Verstraete and Cirafl3] recently discussed a data-hiding

even if the superselection rule is relaxed, at least in the caddotocol whose security is premised on a superselection rule.
where the superselection rule arises from a compact symmé&lowever, as the authors recognized, the protocol is not un-
try group. conditionally secure; it can be broken if the parties establish
Superselection rules arising from compact symmetrny@ suitable shared reference state via quantum communica-
groups are not the most general possible ones. In particuldion. The notion that the naive implications of a superselec-
an especially rich variety of superselection rules are potention rule can be evaded through the use of a suitable refer-
tially realizable in two-dimensional systems such as thosence system was emphasized long ago by Aharonov and
that admit non-Abelian anyons. However, even superselecsusskind14]; see[15] for a recent discussion. A special case
tion rules of this more general kind cannot foil a cheater. Weof our main result was reported earlier [it6].
find that for any two-party protocol that is secure in a world  The rest of this paper is organized as follows: We develop
subject to a superselection rule, the security is maintainethe concept of a reference system in Sec. Il, first for Abelian,
when the superselection rule is relaxed. then for non-Abelian symmetries, and we explain how a ref-
Our analysis of these more general superselection rulesrence system can be used to simulate unrestricted operations
does not rely on the concept of a reference system; rather it is a world subject to superselection rules arising from a sym-
founded on a completely different idea, the concept of thanetry group; this observation is applied in Sec. Ill to the
format of a message. A superselection rule can always banalysis of the security of quantum protocols. In Sec. IV we
characterized by saying that there are charges that must lexplore the distinction between &merantreference system
conserved by all local operations, and when we relax théhat is passed from party to party as needed during a proto-
superselection rule, in effect we are permitting a cheater teol, and adistributedreference system that can be prepared
violate these conservation laws. For the purpose of assessiagd passed out to the parties before the protocol begins. Su-
the security of a two-party protocol, we are interested in howperselection rules arising from non-Abelian symmetries are
the actions of the cheating partylice) affect the outcomes further characterized in Sec. V, and we comment in Sec. VI
of measurements performed by the honest péBigb). Po- on the data-hiding protocol of Verstraete and Cirac. Our
tentially, if Alice is granted the power to violate conservation analysis of the impact of superselection rules on the security
of “charge,” her ability to influence Bob’s measurements will of quantum bit commitment is in Sec. VII; we also show
be strengthened. there that for the analysis of security of afparty protocol,
However, if the total charge shared by Alice and Bob isit suffices to consider the case in which the total charge held
trivial (as we are entitled to assume in an analysis of secuby the parties is trivial. Two-party protocols subject to
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general superselection rules are investigated in Sec. VIII, andn uncertainty large compared %o so that conservation of

Sec. IX contains some concluding comments. angular momentum need not prevent the magnet from coher-
ently exchangingl,=# with the spin. But this explanation
Il. SUPERSELECTION RULES AND REFERENCE does not fully address how the existence of the classical
SYSTEMS magnet is itself compatible with the superselection rule.

Such issues were cogently discussed many years ago by
A superselection rule is a decomposition of Hilbert spaceaharonov and Susskinfll4]. They emphasized that even if
into sectors that are preserved by local operations. The difthe total angular momentum has a definite valile zero),
ferent sectors can be distinguished by attaching to each sefre can still speak sensibly of threlative orientation of two
tor a label, which we refer to as the sector’s “charge.” Theresubsystems. Whenever an experimentalist observes the pre-
fore, an equivalent way to characterize a superselection rulgession of a spin, it is implicit that a reference state has been
is to say that the charge is locally conserved. In the contexéstablished that in effect breaks the rotational symmetry, and
of a cryptographic protocol, this means that when one of thehat the precession is measured relative to this reference stan-
parties(Alice, say performs an operation, the charge in Al- dard. Furthermore, Aharonov and Susskjfid] emphasized
ice’s laboratory is preserved. that just as conservation of angular momentum need not pre-
An important special case arises if the Hilbert spdte vent us from measuring the relative angular orientation of
transforms as a unitary representation of a compact g&up two objects, so the charge superselection rule need not pre-
and the sectors are labeled by the irreducible representationgnt us from measuring relative phases in superpositions of
of G. An equivalent way to describe the superselection rulestates of different charge.
in that case is to say that the allowed operations must com-
mute with the action oG onH. In fact, it has been shown by
Doplicher and Robertgl 7] that such superselection rules are A. Abelian case
almost the most general ones allowed under rather weak con- Before we discuss the more general case in which the

ditions that apply in particular to quantum field theoriessymmetry may be non-Abelian, it will be useful to consider
(without gravity) in three or more spatial dimensions. We saythe symmetry grougs=U(1). Then the charge operat@
“almost” because there is an additional freedom to assign tithe generator ofs) has eigenvalueg € Z, and we denote
a localized state an even or odd fermion number. This ferthe Corresponding orthonormal eigenstates“py Formal

mion number is more than just a conserved charge, becauggates of definite phagevith continuum normalizationcan
of the property that the wave function changes sign wheipe constructed as

two fermions are exchanged.
In two spatial dimensions, there is a richer classification 1 _iqo
of superselection rules, reflecting the exotic quantum num- 0)=—— 2 €% (0=<6<2m), (1)
. . . . . \‘277q:—oc
bers carried by pointlike non-Abelian anyons that occur in
topological quantum field theorigd8-20. We will post-  where
pone further discussion of non-Abelian anyons until Sec.

VIII, concentrating for now on the superselection rules asso- a1 % Liq(6-6') — o
ciated with compact symmetry grougand ignoring fermi- (0'lo)= ZTq__x € =46 - 0) (2)
ons. :

An important example is the group(l) associated with and
conservation of the electric char@ An agent acting locally 1 (2
can create or annihilate pairs of particles that carry equal and lgp=—=—| doeg). (3)
opposite charges, but cannot change the total charge in her V2mJo

vicinity. In particular, this agent is unable to transform any
eigenstate of) into a coherent superposition of states with
different charges, as emphasized by Wick, Wightman, an

The phase statPy) is the improper eigenstate with eigen-
aaluee"" of the unitary operator

Wigner [21,22. w
While we might readily accept that local creation of elec- U,= > g+ 1Xq| (4)
tric charge is physically impossible, other conservation laws g=—c

impose superselection rules that do more violence to OUhat increments the value of the charge by one unit. While

intuition. Suppose, for exampl@n nonrelativistic quantum the phasef is physically unobservable due to the charge
mechanicy that our ag§nt’s actions are required to conserveSuperselection rule, the relative phase @t 6 of the two
the angular momenturd locally. Are we to conclude that if states#’) and|6) commutes with the charge operarand
the agent is presented with a sgirebject polarized spin-up  so is measurable in principle. Indeed, the state

along thez axis, it is impossible for him to transform it to a
coherent superposition of the spin-up and spin-down states?
How are we to describe what happens when a magnetic field
is turned on pointing in th& direction and the spin begins to
precess? A partial resolution of this puzzle is attained byhas a definite value of the relative phage-# and total
noting that the angular momentum of a classical magnet hasharge zero. That is, it is gannormalizablgeigenstate with

2 *
do'lo' + @) @ |0+ 0)= >, e -gyo|q) (5)
q:—:x:
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eigenvaluee‘(‘"o') of the charge-conserving operattr_ breaks theG symmetry, then in effect there is no operative

®U,, whereU_=U!. symmetry at all, and the superselection rules place no restric-
Similarly, the phasesy, appearing in the expansion of the tions on the allowed operations.
state|y), of a systemA, Formally, if the symmetry is completely broken, then the
possible orientations of the condensate are in one-to-one cor-
A= > zpqe‘iq¢q|q>A (6)  respondence with the elements of the symmetry gi@um
q a particular “fixed gauge,” the states of the condensate are

denoted|¢), where¢ € G, and these states transform as the
(%eft regular representation @. That is, a symmetry trans-
ormationg e G acting on the condensate is represented by
the unitaryU(g) where

(where theyy's are real and positiye are themselves unob-
servable, but they can be meaningfully compared to th
phases appearing in the stafi; of a charge reservoR. For
example, by projecting)g® |5 onto the sector with total
charge zero, we obtain the state

U(g)|¢) — [ge). (8)
1 g
l¥)ra= oo f do'[0+ 6')r® €7 [h)p These states can be expanded in the basis of irreducible rep-
vem resentations o6 as
=> 'J/qe_IQ(¢q_0)|_ DR ® [Pa (7) .
’ 6= \*Di(&)ai.a), (9)
which has measurable relative phases. A state|lilke of a gia ' No

charge reservoiR that provides a phase standard with which ) ] ) ]
other states can be compared will be called a “referencé/heren, denotes the dimension of the irreducible represen-
state” or a “condensate.” tation DY(¢) andng is the order ofG. Inverting the Fourier

In the statey)ra the charge of the systemis compen-  transform we obtain
sated(“screenedj by the charge of the reservdi. There-
fore, the system and reservoir are entangled, and tracing out o\ g o
the reservoir destroys the coherence of the superposition of joi.2) = (E‘G Ng D& (4)l4). (10
charge states for the system. While formally correct, this
sf[atement'can be misle.ading if the reservoir remains accesiote that in Eqs(9) and(10) we have used notation appro-
sible and is allqwed to interact with the system durln_g sub-priate for a finite group; in the case of a compact Lie group,
sequent operations. For example, the operdiqi, that in-  the sum overgp e G would be replaced by an integral with
creases the charge of the system by one unit is disallowed ¢spect to an invariant measure on the group. The states
the superselection rule, but it can be accurately simulated by, i,a) transform undeG as
the allowed charge-conserving operafor)gr® (U,) acting
on |¢>RA_—this operator increases the cha_rgef-\djy _borrow- U(g)|a.i,ay= >, |q,j,a>D?i(g), (11)
ing a unit of charge fronR. If the reservoir remains acces- j
sible at all times, then an arbitrafmot necessarily charge-
conserving operation acting o’ can be perfectly simulated ) . . . b i
by a charge-conserving operation actingrkof Thus, at least refer" to tg? 'Tﬁex_tl.’z’é' :qu 'nf|8" ,)a) astht_hel golor In-
as a matter of principle, the charge superselection rule place: X,” and to ¢ € ac_|on” '?’h ) 'od (g_ 102 IS 1N ?j)'( as a
no inescapable restrictions on the allowed operations. This i$2349€ transformation. e inder=1,2,... ng distin-
the main point stressed by Aharonov and Susskir. guishing then, copies of the representati@f that occur in

The phase reference state can be interpreted physically 4% decomposition of the regular representation, will be
a static piece of superconducting material with a definitec@lled the “flavor” index. The physicalG-invariant” opera-
value of the superconducting phase. While the phase itself {{0NS are ~those that commute with all ~gauge
not gauge-invariant, the relative phase of the system and refansformations—these presergeand act nontrivially only

ervoir has observable consequendike the Josephson ef- on the flavor, not the color. Therefore, by including the color
fect) when the two are brought into contact. Similar issuesVe Nave chosen a redundant description of the physical Hil-

discussed i23-27, arise when considering the physical Pert SPace. This redundancy, while not absolutely necessary,
content of relative phases in optical systems. is quite convenient, and in particular will be useful for our

discussion in Sec. Il of the security of quantum protocols.
In addition to theG gauge symmetry, there is also a group

G of “global” transformations that commute with(g), un-
Our discussion of the Abelian case has suggested that sder which the stategp) transform as the right regular repre-

perselection rules are nullified if suitable reference systemsentation ofG; the elemenh of the global group is repre-

are available. Now we consider the more general case, whegented by(h), where

the symmetry group i§&, which may be either a finite group

or a compact Lie group. The superselection rule dictates that V(h)|#) = |ph™) (12

allowed local operations must commute wih But we may

anticipate that if a condensate is accessible that completebnd

In keeping with standard physics terminology, we will

B. Non-Abelian case
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I

Thus the global transformations act on the flavor indef ~ acting on the color degree of freedom can be simulated by
the states in thd|q,i,a)} basis—unlike the gauge transfor- the invariant operation
mations, they act nontrivially on the physical states. inv _ A PP

In more geometric terms, a condensate may be interpreted RA™ EG (X P)r® <ij2ab |q">Dia(¢)MabDbj(¢ )<q*1|> :
as an asymmetric classical rigid body that can be rotated o A
either “actively” or “passively.” What we have called the (2
color (gaugg rotation is a passive rotation that acts on theyinv has an invariant meaning because it transforms the color
space-fixed axes—it does not change the actual orientatiogy A rejative to the color of the reference syst&nin effect,
of the body but only changes our mathematical description ofhe color rotation is simulated by converting the color index
the orientation. In contrast, what we have called the flavointg 4 flavor index(depending ong), on whichM may act

(globa)) rotation is an active rotation that acts on the body-yith impunity. For fixeds, the simulation is achieved via the
fixed axes and alters the physical orientation. A flavor rotajsomorphism

tion is G-invariant in the sense that it commutes with color
rotations, and so is a physical operation, allowed by the su- |g,a0a — |0, A)ra= | PR © > |0.))ADS (), (22
perselection rule. j

In contrast to the flavor orientation, the color orientation
of an isolated system\ has no invariant meaning, as it is
modified by a color rotation. However, the orientation/of inv -
relative to the condensate @®es have meaning, and an op- MRald, & 2ra % 19 )M e @3

erator that rotates the relative orientation admits an invariant o _
description. Suppose, for example, that syst&ris itself a  Furthermore, this isomorphism can be extended to operators
condensate in the stai,, while the state oR is ¢g. The M that change the value ofas well as rotating the color for

such that

relative orientation fixed g; the operator
drn = drlda (14) Maslaida— 2 a',)aM§ (24)
q'.j
is invariant if a common color rotation is simulated by
U(h)gaipa— pp,  ¢r— her (15 MY a, ¢,a)ra= >, |9, &, b)RAMg'aq, (25)
is applied to both objects. The transformatibiig)ii that a'b
changes the relative orientation according to which generalizes the result
U(Q)Rk bra — Gébra (16) MRA( 6 ® €"¥|a)) = |O)r® 2 €™ ld)MTY (26)

!

q
has an invariant meaning and commutes with the color rOtafhat we found in the case @=U(1)

tion U(h)ra. We may interpret the invariant rotation as one
that rotatesA while R is “held fixed,” acting as
C. Properties of the simulation
U(@RrA|¢R @ |da) = ¢r) © |hrgdr'da),  (17) We will refer to the world in which all operations are
required to commute with the action of the symmetry group
G as the “invariant world” or I' world,” and we refer to the
v _ 1 world in which arbitrary operations are allowed as the “un-
U@ra= 2 (#XdDr® U(¢geHa. (18)  restricted world” or U world.” What we have observed in
=G Egs.(22) and(25) is that the physics of the) world can be
If systemA is not a reference system but rather an objecfaithfully reproduced in thd world, as long as a suitable
transforming as the irreducible representatipof G, then  reference system is at our disposal.

or equivalently

U(4ge™) can be expanded as Let us restate the main conclusion in a more succinct
notation: Supposa4 is an arbitrary system that transforms as
U(g)iF'Q,‘;: > (X some representation of the groGpand letR be a “reference

$<G system” that transforms as the left regular representation of

g q Q¢ =t i G. Let M be an arbitrary transformation acting én Then

®(.E |0,1)Dik(¢)D(9)Dgi(¢ )<Q-J|) : there is a corresponding transformatidif¥ acting onR and

hjab A A defined as
(19)

M™= 3 ()P @ [U(HMU(H a0 (27

More generally, any transformation $eG
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MI"V is an invariant operator whose action B\ simulates
the action ofM on A.

That is, the operatoms!™ have the following easily veri-
fied properties:

(i) M"V is G-invariant Proof: From the transformation

properties ofR and A we have
[U(g) ® U(@IM™[U(g)™" ® U(9)™]
=2 (lgp)Xge)) ® [U(geMU(ge) =M™,

»eG
(28)

PHYSICAL REVIEW A 69, 052326(2004)

Loosely speaking, the reference system is needed so that
when a noninvariant operation acts Anthe change in the
charge ofA can be balanced by a compensating change in the
charge ofR. But if the statep of A is invariant, then only the
charge-conserving part dfl contributes to the expectation
value t{Mp) anyway. In the simulation of this charge-
conserving part oM, the reference system is superfluous
and its state irrelevant.

Note that if G is a Lie group rather than a finite group,
then the regular representation is infinite-dimensional, and
our formal arguments requie to be an infinite-dimensional
system. How is the fidelity of the simulation affectedRifis
truncated to a finite-dimensional system? In fact, the fidelity

where in the last step we have reparametrized the sum Ry il be perfect if the charge remains bounded in the

replacinge¢ — g 1¢.

process to be simulated. Consider, for example, the Gase

(il) Invariant operators on RA provide a representation °f=U(1), for which Eq.(27) becomes, e.g.,

operators on AProof: We have
> (¢ il bo)ba)
$1,42€G

®[U(d)M;U(¢)U(hIM5U(3Y)]
=2 (o)) ® [U(GMMU(¢) Y]

$eCG
=(M;Mp)". (29
(i) If M is G-invariant, then MV=Ig®M,. Proof: If
U(¢) commutes withM for eachdg, then

invp pinv _
Ml MZ -

M= > (|eXd) @ M=18® M. (30)

$eG
(iv) If pis invariant andtr(pg)=1, then
tr MW (pg ® p) = tr Mp. (31

Proof: If U(¢) commutes withp for eache, then

tr M™(pg ® p)= 2 (Plprl KM U(h)"pU(¢)]

$eG
=tr(pp)tr(Mp) = tr(Mp). (32
The propertiegi) and(iv) mean that as long as the state

(Ja-rXa)™ =2 (o’ +rXa'Dr® (Ja-r)d)a (33)
®

in the | world, a process in which units of charge are
removed fromA is simulated by adding the units to R.
Suppose we are assured that the total charge added to or
removed fromA will never exceedr units. Then we may
choose the initial state d® to carry charge zero, and we can
limit R to the (2r+1)-dimensional space spanned by the
states|qr), gr=-t,-r+1,... r—1,r. This truncated refer-
ence system suffices because states Ygith>r will never

be accessed in the simulation anyway. A similar remark ap-
plies if G is an arbitrary compact Lie group.

Ill. REFERENCE SYSTEMS AND QUANTUM PROTOCOLS

We have concluded that in the presence of a suitable ref-
erence system, superselection rules place no inescapable re-
strictions on the allowed operations. We may anticipate,
therefore, that a cryptographic protocol is secure in the in-
variant ‘1 world” (governed by the superselection ruileand
only if it is secure in the unrestrictedJ*world.” If we faith-
fully adhere to the usual stringent principles of quantum
cryptology and place no restrictions on the resources avail-
able to our adversaries, then we must admit the possibility

of A is G-invariant, then by making use of a reference sys-that the dishonest parties could share access to a reference

tem, measurements in thé world can be faithfully simu-
lated by measurements in thevorld. That is, given an ar-
bitrary measurement performed oA (with operation
elements that are not necessar@®yinvariany, there is an
invariant measurement performed &A (with G-invariant

operation elementghat has the same probability distribution

of outcomes. Furthermore, it follows from propefti) that

system during the execution of the protocol. For the case of
superselection rules arising from compact symmetry groups,
this observation suffices to answer Popescu’s question about
the impact of superselection rules on the security of quantum
protocols.

Let us now discuss this point in greater detail. To be ex-
plicit, consider at first a protocol involving two parties, Alice

the physics of théJ world can be faithfully reproduced in and Bob. Alice holds a private local systehthat is beyond
the | world even if the measurement is preceded by a serieBob’s control, and Bob holds a private local systBrthat is

of unitary transformations—applying™ in the | world has
the same effect as applyingin the U world. Property(iii)
tells us that, as expected, the reference syfRdamsuperflu-
ous if the U-world transformation acting o is already
G-invariant.

beyond Alice’s control. In addition, there is a message sys-
temM that they can pass back and forth. At the beginning of
the protocol, they share a product staieo pg® py. In each
round of the protocol, one of the parties performs a joint
guantum operation on her/his local system and the message,

To derive these properties, we require that the referencand then sends the message system to the other party. Finally,

system transform as the regular representatiofs,obut no

after all quantum communication is completed, both parties

condition is needed on th&tate pg of the reference system. perform local measurementSee Fig. 1).
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A g: Aout G-invariant. In effect, then, Bob measures the invariant op-
A

—— A

o erator
B1 - B3
B | B out Fep= VTEB,bV (36)

FIG. 1. A two-player quantum game. Alice and Bob have pri- in the invariant stat@,® pg® py.
vate systems, and a message system that they pass back and forth.Of course, a protocol in theworld can be regarded as a
At the end of the game, Alice and Bob measure their privatespecial case of a protocol in thé world, where the initial
systems. state is a product state, and Kitaev's result applies to this

U-world protocol. Therefore, one of the partieslice, say)

For example, the goal of the protocol might be to flip ancan force one of the outcome6, say with probability at
unbiased coin. In that case, the final measurement performdéast 1A2. However, Alice’s cheating strategy that achieves
by each party has two possible outcomes, 0 or 1. If botihis result might employ operations that are @invariant.
parties follow the protocol, then both obtain the same out-To show that Kitaev's result also applies to the original
come. Furthermore, the two outcomes are equiprobable. Aworld protocol, we must show that Alice’s cheating strat-
coin-flipping protocol issecureif neither party, by departing €gy in theU world can be faithfully simulated in thieworld
from the protocol, can bias significantly the outcome of theby making use of a suitable reference system. For this pur-

il
l
l

other party’s measurement. pose, we apply the properties of the invariant operéV
We say that astrong coin-flipping protocol has bias if ~ that were discussed in Sec. Il C.
neither party by cheating can foreither outcome to occur When Alice cheats in th&) world, she replaces the op-

with probability greater thar%+e. In a weak coin-flipping ~ eratorV called for in the honest protocol with an arbitrary
protocol, Alice wins if the outcome is 0 and Bob wins if the operatorj\/,;_ applied toAM, where V/&j is not necessarily
outcome is 1, and we say that the biasei$f neither can  G-invariant. Then Bob’s measurement yields the outcdme
force awin with probability greater thar§+e. (Thus, in a  with probability

weak protocol with biag, a cheater might be able toseon

purpose with a probability exceeding+e.) Note that the Pg(b) =tr[Fg 1(pa ® pg © pw)], (37)
protocol might abort if cheating is detected; by “the probabil-

ity of outcome 0" we mean the joint probability that the Where

protocol does not abort and the outcome is 0. KitfEy;,11] , 't )

has shown that, if no superselection rules are imposed, then Fep=V' EgpV (38)
strong quantum coin flipping is impossible with bias

e<(1/\s’2)—%:0.207. Ambainig28] has shown that a weak and
coin-flipping protocol with bias ¢ requires at least
Q[log log(1/e)] rounds of communication.

We are interested in whether these conclusions about This cheating strategy in tHe world can be simulated in
coin-flipping in theU world remain valid in thd world. For  the | world if Alice has a reference systeR—instead of
a coin-flipping protocol in thé world, we may assume that applying the noninvariant operatwf, to the systenAM, she
the initial state shared by Alice and Bob is a tensor produc(tjpp”es the invariant operath\i”" to RAM. Note that since

of invariant stateg, ® pg® py. In the honest protocol, Alice j . .
and Bob take turns applyinG-invariant operations to the Bob follows the honest protocol, which requirdg, to be

. . . . . J .
system that they share, then measure invariant observablegé'vnva”am’ applylngVBj to B.M IS equivalent to applying
In fact, without loss of generality, we may assufi that Ve to RBM, by property(iii) in Sec. Il C. Therefore, when
each operation applied by Alice or Bob is an invariant uni-Alice adopts thel-world strategy, Bob obtains outconie
tary transformation, and that the final measurement is an irwith probability
variant projective measurement.

V’ = VBnV/An et VBZVAZVBlVAl. (39)

If Alice and Bob play the game honestly, then the prob- Pi(b) = tr[Eé,b(pR ® pa® ps ® pw)], (40)
ability Pg(b) that Bob’s measurement yields the particular
outcomeb can be expressed as where

Pg(b) =t{Egp V(pa ® pg ® pu)V'], 34 -~ =~ ~
g(b) =tr[Egp V(pa ® pg @ pm)V'] (34) Fé,b:V'TEB,bV’ (41)
where
and
V= VBnVAn ce VBZVAZVBlvAl. (35)

Here theV, are unitary transformations applied AM (we V' =Vg VA" VE VA VE VAT (42)

have assur'ned that Alice makes the first move in the game . . . _ _
the Vg are unitary transformations applied BM, and the But since the invariant operators provide a representation
Esp are the projectors defining Bob’s final measurement[property(ii)], we may writeV’'=V"", and sinceEByb:EQ‘{)
Furthermore, in theé-world protocoI,VAj, VBJ_, andEgy, are  as well, we have
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EL = plinv (43) As we observed in Sec. Il C, the reference system re-
Bb™ 1 Bb - quired by the cheaters in thé world can be finite-
dimensional, as long as the cheaters in thevorld apply

Finally, the initial stata® ps ® py shared by Alice and Bob operations that change the “charge” by a bounded amount.

is G-invariant; therefore, by propertyv),

Pé(b) = Pé(b); (44) IV. DISTRIBUTED REFERENCE SYSTEMS
the measurement outcontein the I-world protocol occurs The key ingredient in our discussion bivorld quantum
with the same probability as the outcornén the U-world ~ protocols is the observation th&-noninvariant operations
protocol. can be faithfully simulated through the use of a reference

Therefore, Alice’s simulated cheating strategy in the System. Suppose, for example, that Alice and Bob take turns
world perfectly reproduces the probability distribution for acting on a systen€ that they pass back and forth. Then
Bob’s measurement outcome that is achieved by her cheatingice and Bob in thel-world can simulate an arbitrary
strategy in theU world. The same is true if Bob makes the U-world protocol in which the initial state ofC is
first move in the game instead of Alice. Similarly, if Bob is G-invariant. They carry out the simulation by passing the
the cheater, Bob has a strategy in theorld that simulates reference systerR back and forth along witlC, each taking
his U world cheating strategy. We conclude that if Alige  turns applying invariant operations RC. Similarly, in our
Bob) can cheat in th&) world, then shehe) can cheat just as analysis of cheating in Sec. Ill, we allowed tkeheaters to
successfully in the world. Thus, Kitaev's proof of the im- pass the reference systefamong themselves as needed
possibility of strong coin flipping with bia$<(1/\f§)—%, during the execution of the prptocol. A refgrence system that
originally formulated in theU world, also applies to thé  travels from place to place might be callgherant
world. Similarly, Ambainis’s lower bound on the number of ~Here we will briefly discuss an alternative scenario, in
rounds of communication needed for weak coin flipping alsoVhich the parties sharedistributedreference system—each
applies to thd world. party holds a fixed portion of this system throughout the

Th|s Conc|usion that Cheating in th_e W0r|d can be suc- execution of the pI’OtOCOL This discussion is not actua”y
Cessfu”y simulated in thé world app”es not just to coin needed fOI’ our ana|ysi8 Of SeCUI’i'Fy, but |t iS he|pfu| nonethe-
flipping protocols, but to any two-party protocol in which the less for understanding the physics of superselection rules.
goal of a cheating Alice is to bias the outcome of a measurelndeed, in many physical situations in which reference sys-
ment performed by an honest Bob. Furthermore, it istems are use(e.g., in optical physigsthe system is distrib-
straightforward to generalize the argument tongparty pro- ~ uted rather than itinerant.
tocol, in whichk cheating parties wish to bias the outcomes L€t A denote Alice’s part of the reference systelinde-
of measurements performed by thek honest parties. For note Bob’s part, and suppose that at the start of the protocol
such a protocol in theé world, where the initial state is a AB is prepared in the state
product of invariant states, any cheating strategy that can be 1
executed in theJ world can be simulated perfectly in the 00ap= 7= 2 [)a® |Ple. (45)
world if the k cheating parties share access to a reference VNG ¢eG
system. Therefore, the protocol can be no more secure in t
I world than in theU world.

To summarize, let us refer to amparty quantum game as
an I-world game if the initial state is a product of invariant 1 . )
states, and if in the honest protocol all operations performed |0)ag = I E o, @A @ [a.i,a)s. (46)
by the parties are invariant operations.kin parties are VG aia
cheaters, we say that their cheating strategy id-aorld  Thus, in principle Alice(say) could preparé0)g in her lab
cheating strategy if the cheaters are required to perform inand then ship half of it to Bol(The statg0),g is unnormal-
variant operations, and we say that their cheating strategy igable and unphysical i6 is a Lie group. For now we will
a U-world cheating strategy if the operations performed bysuppose tha is a finite group, but we will comment on the
the cheaters are unrestricted. Let us say thatl-aorld  case of a Lie group beloyv.
cheating strategy isquivalento aU-world cheating strategy In the statg0),g, Alice’s condensate and Bob’s, have val-
if both strategies produce the same probability distributionsies that are distributed uniformly over the gragpbut these
for the outcomes of the measurements performed bynthe values are locked together. Therefore |ifc is any pure
-k honest parties. We have proved the following. state ofC, thenMy¢ andMEY act on|0)ag® | )¢ in the same

Theorem 1 Suppose that in the world all quantum op-  way,
erations are required to l6&-invariant, wheres is a compact

hﬁﬂs state has trivial total charge; indeed, when expressed in
the Fourier-transformed charge-eigenstate basis, it is

Lie group, and that in th&) world quantum operations are MR|0)as ® [#h)c) = MEA|0)a @ [#)c)
unrestricted. Consider anpartyl-world quantum game, and 1

a U-world cheating strateg’ in which k<n parties cheat. = T D Ba® b

Then there is am-world cheating strategp’ that is equiva- VG ¢G

lent to A" ® [U(AMU(D) e, (47)
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FurthermoreMl¥ and M. act identically on any state of the thel world. The state i&-invariant, but unlikg0),g it is not

form a charge eigenstate; rather it is a mixturginfariany states
with various charges. For example, in the caBeU(1),
W) apc= i_ S Ea® | ® s (48) |0)ag is the (unnormalizablg state
\“’nG »eCG
2 *
where|,)c might depend omp, a form that is maintained as |o>AB:f |0a® 0= > |-a® | (52
successive invariant operations are applied@and toBC. 0 g=—c

Therefore, the outcome of the protocol would be the same if _
each invariant operatioMi% applied toBC were replaced Alice’s charge and Bob's charge are perfectly anticorrelated.

by the corresponding invariant operatibf%. applied toAC. [N contrast,pag is

We conclude that the simulation in which the distributed ref-

erence systenAB is prepared in the initial stat®)sg is ocfde o)A (10)6
equivalent to a simulation that uses an itinerant reference Prs (16X aDa e (|6)EDe

systemA. Since this latter simulation has all of the properties
listed in Sec. Il C, we find that a bipartiteworld protocol % 2 |0a0s)0a=00s+ 7. (53
using the distributed reference system can faithfully simulate a0

an arbitrarylJ-world protocol. Formally, this state appears to be separable, as it is a mixture

3f the product statel) ® |6), but this is deceptive, because
|6) ® | 0) is notG-invariant and is therefore incompatible with
the superselection rule. On the other hand, in the charge-
eigenstate basisppg can be expressed as a mixture of

if there is a fixed offset of Bob’s condensate relative to Al-
ice’s, as long as the offset is known. That is, if Alice and Bob
share the state

_ 1 _ G-invariant pure states, each with a definite total charge;
0,8)a= = 2 |Da® |dd)s however, these pure states are highly entangled, with an in-
VNG ¢<G definite value of Alice’s(and Bob’g local charge. The state

1 _ pag IS Not a mixture of invariant product states, and therefore

=7 > Dan(¢) cannot be prepared without quantum communication be-

VNG qab tween Alice and Bob. Classical communication alone is in-

X(E Qi a)s ® q,i,b)B), (49) ztjafg(éi:rr:jt for Alice and Bob to establish their common phase

| .

_ ~ o Now let us return to the question we postponed earlier:
then the invariant operationd 5. and[U(¢)MU(¢) it act ~ what if G is a Lie group, so that the statf,g and pag are
in the same way. If Bob knows, then he can participate unnormalizable? To be specific, consider again the &se
successfully in the simulation by “twisting” his operations =U(1), and suppose that Alice and Bob are instructed to

appropriately. perform this protocol: Alice is presented with a charge-zero
Similarly, in a protocol withk parties, the distributed ref- state|0). She is instructed to rotate th|§ state to the superpo-
erence state sition of charge eigenstate$0)+|1))/y2 and to send the

resulting state to Bob. Bob is to perform an orthogonal mea-
1 surement in the basi§0)+|1))/y2 and so verify that Alice
0 es—= T ® e ® 50 N .
O parties g EG |¢>R1 |¢>R2 |¢>Rk 50 prepared the correct state. To make sense of this procedure,
_ o Alice and Bob must share a common reference state that
provides a common “phase standard” for all the participantsserves to lock together their phase conventions; for example,
allowing them to simulate aJ-world protocol in thel  this state could be a shared pure stébgg with definite total

world—the{th party simulates the noninvariant operatdn  charge. Alice’s coherent operation on systénacts as
by applyingM"™ to the target system and her p&i of the

reference system. Again, the parties can twist their local op- 1
erations to compensate for known relative offsets of their [¥as® |[O)c — =[[¥)as ® [0)c+ (U )al$has ® [Lcl;
condensates, if necessary. V2

In the statg0),g, there is a quantum correlation between (54)
Alice’s condensate and Bob’s. A common reference standard
can be provided instead by a classically correlated state sudhat is, Alice simulates the charge-nonconserving operator

as (Uy)c by applying the invariant operatqtJ_),® (U,)c to
L AC. When Bob receives syste@) he performs his measure-
ez — S (X B)a® (| HH D). (51) ment by first simulating the transformation
NG ¢eG .
If Alice and Bob are equipped with the staigg, then again 0)c — E(|O>c+ 1De),
Mg and Mg¢ act in the same way, hence they can use this
distributed reference state to simulaté&avorld protocol in (59)
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1 ducible representations of compact groups. For another,
|De— T§(|0>c - Do), while it is possible to formulate a security analysis of quan-
v tum bit commitment within the framework of our argument
and then measuring the charge @f After Bob's first step, in Sec. lll, it is more natural to structure the argument dif-
the state ofABC has become ferently, following more closely the standard analysis of
quantum bit commitment.
l[l ® lg+ (U)a ® (Ul ¥has ® |0) In this section, we will emphasize the essential differences
2" AT B A +BIT/AB ¢ between superselection rules arising from non-Abelian sym-

1 metry groups and those arising from Abelian groups. The
+—[Ia® (U_)g— (U)a® Igllhag ® |1)c. (56)  discussion will pave the way for our analysis of quantum bit
2 commitment in Sec. VIl and of general two-party protocols

When Bob measures the charge, the probability that he oD Sec. VIIL.

tains the outcomél). and fails to verify Alice’s state is A crucial difference between Abelian and non-Abelian
charges is that non-Abelian charges are nonadditive: the

1 charges of two subsystemdsandB do not necessarily deter-
P1= 2[1 ~ Re asyi(U-)a ® (U)gl¥)asl- (57) mine the charge of the composite syst&®B. This feature
can be restated as a property of the algebra of observables of

If, for example, the shared reference state is the bipartite system. Letl denote the algebra of local op-
N-1 erators(an associative algebra, closed under Hermitian con-
1 ) : .
[)as= —_<E |- Qa ® |Q>B), (58  Jugation, that commutes with all locally conserved chayges
VN g=0 acting on subsysterA, and let5 denote the algebra of local

operators acting oB. The commutant of4, denotedA’, is
the algebra of operators acting on the composite sygtBm
that commute with everything itd, and similarly forB’.
1 Now, if all superselection rules are Abelian, thdn=25 and
"N’ (590  B’=A. But if the superselection rules are non-Abelian, the
theory has sectors with nontrivial total charge in which this
Thus, for finiteN, the state received by Bob does not matchrelation does not hold. This unusual structure of the local
perfectly with the state prepared by Alice—the superpositiorpbservables has potential implications for the security of
of charge eigenstates decoheres slightly. But this decoheguantum protocols.
ence becomes negligible in the limil— o, where the To be more explicit, suppose that the superselection rules
“charge fluctuations” of the shared condensate are large. arise from a non-Abelian symmetry gro@ and the opera-
The lesson we learn from this example generalizes to nortions that Alice(or Bob) can perform must commute witA.
Abelian compact Lie groups. We can replace the unnormalA state|y) in Alice’s (or Bob's) Hilbert space can be decom-
izable state posed into irreducible representations@fas

(60) ) =2 yilaia); (61)

gia

a normalizable approximation to the std@@,g, our expres-
sion for P, becomes

P

1 —. :
|0>AB: /__ E |q1|1a>A® |q1|1a>B
VNG qgii,a
by a normalizable state with a truncated sum over the char
g. If Alice and Bob use this truncated distributed referenc
state to simulate B-world protocol, their simulation will not

I%Iereq labels the irreducible representati@r “charge’, i is
gt e “color” index acted upon by the representatiorGofand
a is the “flavor” index that distinguishes among the various

have perfect fidelity. But as long as all operations applied b)popies of the irreducible representatigrappearing in the

Alice and Bob change the charge by a bounded amount, tH ecom.position. Note that since we are no longer assumi_ng
fidelity can be arbitrarily close to 1 if the reference state jsthat Alice’s system transforms as the regular representation
f G, there need be no connection between the number of

chosen appropriately. If Alice and Bob are permitted to use d th ber of col iated witirh
truncatedtinerant reference system rather than a distributed 1avors and the number of colors associated witrine ac-
on of a color gauge rotation representigg G on |¢) is

one, then perfect fidelity can be achieved, as observed in sell¢
Inc. U@y = 2 ¢kla.j.aDi(g). (62)

g.i.j.a

An operatorM allowed by the superselection rule, which
must commute with eacBYqg), preserves the charggand

Our observations in Sec. Il B emphasized the similaritiesacts only on the flavor index according to
between Abelian and non-Abelian superselection rules, en- _ .
abling us to formulate a security analysis in Sec. lll that M[y) = 2 ‘l’ﬁam"’bwga' (63)

. . . g,i,a,b

applies to both Abelian and non-Abelian symmetry groups.
But in several respects the arguments in Sec. Ill are still noSince allowed operations act nontrivially only on the flavor
adequate. For one thing, so far we have treated only thandex, it is convenient to use a notation that suppresses the
special case of superselection sectors labeled by unitary irreolor indexi. We denote by, theinvariantHilbert space in

V. INVARIANT OPERATIONS AND COMMUTANTS
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the chargeg sector, spanned by statfega) that are labeled its conjugate representatiagy, and it occurs only once in
only by the flavora within the sector. The corresponding this product. Therefore, in the case where the total charge is
operator algebra respecting the superselection ruld#s,), g=1, Eq.(68) reduces to
spanned by linear operators acting on this invariant space.
Thus Alice’s invariant Hilbert space is Hi=&Hpaq® Heg (77)

q

Ha= EBHAVQ (64)
q in this case, the factovg~“ is superfluous. Now, the joint
operator algebra contains operations that cannot be executed

and Alice’s local operator algebra is ! : ,
by Alice and Bob locally—these operations change Alice’s

A=®L(Hag)- (65  charge and Bob’s while preserving the total chaigé
d course, this can happen evenGfis Abelian. But any op-
Similarly, Bob’s operator algebra is eration that commutes with Alice’s algehrh must preserve
Alice’s chargeq, and act trivially in each of Alice’s charge
B=&L(Hgg). (66)  sectors; such operations preserve Bob’s chgrae well, and
q thus are in Bob’s algebr&. Therefore, A and53 are commu-
Now consider the composite systekB. Its invariant Hil-  tants of one another.
bert space too can be expressed as a direct sum over chargeHowever, if the total charge is nontrivial, théhneed not
sectors be the commutant ofl. To illustrate this phenomenon, con-
sider the cas&=SU(2), where the irreducible representation
H= ?Hq' (67)  is labeled by the spif. For SU2), VIAJ8 is always onef{or

zeroj dimensional, and Eq68) reduces to
while the full operator algebra i®qL(H,). But we should
consider howt, is related to the invariant Hilbert spaces of Hij= & Haj, ©® Hpjg, (72
the subsystems. The chargeHilbert space of the joint sys- Inle

tem can be expressed as e .
where it is implicit that each product of representations ap-

Hoq= ® Hag, ® Hagq ®VgA*qB' (69) pearing on the right-hand side transforms as gpifio be
dde ° concrete, suppose that Alice’s system has %piBob’s con-

WherengvQB denotes the space of invariant linear maps from_tai?s both a spin-0 and a spin-1 component, and the total spin

the irreducible representatianto the tensor product of irre- 1S 2 then

ducible representatiorgy ® gg. This space can be nontrivial

(of dimension greater than) If the tensor product contains Hiz=Ha12® (Heo® Hp ). (73
the representatiog more than once. ) ) ) )

When expressed in terms of a particular color basis for thél0te that in this case, contrary to the case in which the total
ireducible representatiorgs g,, andgg, the components of charge is trivial, a single value gi can be combined with
Vi gre the Clebsch-Gordon coefficien@ symbolg, of either c_)f two different values c_)fB to obtain thg same t.otal
the groupG. Let{|d,,i)} denote an orthonormal basis for the char.g.ej. Therefore, there are mva_rla,nt operations acting on
representation, {|gs,|)} a basis forgs, and{|q(e),k)} a the joint system that pr,eserve Alice’s charge and the t_otal
basis forq(a), where the index labels the various copies of charge, but change Bob's charge. These operations are in the

. . . commutant ofA but not inB3; henceA’ # B.
the representatioq that may be contained ig,®gg. Then We arrive at another way of looking at this property of
the components 073~ are

Hq» if we imagine that there is a third party Charlie who

[VI%e(a) ]l = ((ga i| ® (Gg,j)|a(a), k). (69) holds a compensating charge, so that the total charge is
q k ’ ' ' trivial. Now
These components compriseGainvariant tensor with the
property Ho=Ha12® (Hgo® Hc12® He1® Hean); (74
V()= > Dﬁ‘,‘(g)Dﬂ%(g)[VgA‘qB(a)]w’Dﬂ,k(g). an operation in4’ can be performed by Bob and Charlie
i K acting together, but not by Bob alone.
(70) In order that A’ # B, it is not necessary for one of the

parties to possess a state with indefinite charge. For example,
Invariant operations act not on the color indices ofin the caseG=SU(3), the tensor product of the irreducible
[Vi®(a) I, but rather on the index that distinguishes the octet representation 8 with itself contains two copies of 8,
flavors ofq contained inga® gg. Furthermore, the invariant one symmetric and one antisymmetric under interchange of
operations can also alter the charggsandgg appearing in  the factors,
Eq. (68), while preserving the total chargp

The notation of Eq(68) and its implications may be clari- 8 ® 85 D 8sym® By (75)

fied by discussing specific examples. The trivial representa-
tion (q=1) is contained only in the tensor productaf with  Thus, in the decomposition

052326-11



KITAEV, MAYERS, AND PRESKILL

Hg=Hps® Hgg® V5E, (76)

PHYSICAL REVIEW A 69, 052326(2004)

Up until now, we have explicitly discussed only the case
of superselection sectors arising from a compact symmetry

the joint invariant Hilbert space is two-dimensional, while group, but much of the formalism we have outlined in this
Alice and Bob both have one-dimensional Hilbert spaces angection can be extended to a more general setting. Whatever

trivial invariant operator algebras. Thef! is the full opera-
tor algebra, clearly different frons, and similarly5’ is dif-

the origin of the superselection rule, the allowed operations
act on a suitable invariant space. Sectors can still be classi-

ferent from.A. Again, an alternative description of the invari- fied by conserved charges, but in the general case, the space
ant space is to note that Charlie could hold a compensating BgquB is defined more abstractly, rather than in terms of

charge, in which case the total charge is trivial and
H1=(Hps® Hpg® Hcg) ® V7P (77)

is two-dimensional.
For the purpose of describing-invariant operations, it is

group representations. One important property that continues
to hold in the general settingvhich will play a central role

in our analysis of quantum bit commitment in Sec. VII and
of general two-party games in Sec. Vjllis that for each
value g of the charge, there is a unique conjugate charge

always legitimate to introduce a compensating charge withSUch that the fusion of the charges contains the trivial charge
out incurring any loss of generality. To see this, first note thaf€ctor:

if £is aG-invariant quantum operation, then

E[U(@)pU(g) ™= U(9)&(p)U(g)™ (78
for anyg e G and any state. In particular, then,
EG(p)1=dlEp)], (79
whereg is the map
1
G(p)=— 2 U(@pU@™, (80)

NG geG

VI. DATA HIDING

Verstraete and Cirad 3] described a data-hiding protocol
whose security is founded on the charge superselection rule
for G=U(1). Suppose that a trusted third party Charlie pre-
pares one of the two orthogonal states,

1
|£)=-=(0D £ 10), (86)
V2

which induces decoherence of a superposition of distinct irvhere|0) and |1) denote states of charge 0 and 1, respec-

reducible representations &,
G(q.i,aa’,j,bl) = 5“‘*'(5”(“—1} Iq,l,a><q,l,b|>- (81)
Equation(79) means[26] that the state
=2 yiiai.a) (82

cannot be distinguished by ary-invariant operation from
the state

* 1
Gluxuh = = wﬁwf%(n—z? Iq,j,a><q,j,b|>- (83)
q ]

g.abi

tively, and distributes half to Alice and half to Bob. If Alice
and Bob could each measure the Pauli operdttrat inter-
changed0) and|1), they could distinguishthe statés) and

|-) by performing these measurements and comparing their
outcomes. HowevetX does not commute with the electric
chargeQ; if Alice and Bob are permitted only to perform
local charge-conserving operations and to communicate clas-
sically, then they will be powerless to distinguish the two
possible states.

On the other hand, if Alice and Bob share access to a
common phase reference state, their activities will be unre-
stricted and nothing will prevent them from performing e
measurements that unlock the classical bit stored in the state
prepared by Charligaside from the small loss of fidelity that
arises if the reference state has large but finite charge fluc-

Now, consider a syster whose charge is screened by a tuations, as in E¢58)]. In Bloch sphere language, Alice and
systemC, so that the state of the joint system has trivial totalBob have naa priori means of orienting their measurement

charge,

[Wac= 2 ¥ |ai,aa® [ (84)

gai

Tracing over systen® produces the state

x l
trelldhac= X vdug (n—E |q,j,a><q,j,b|). (85)
q ]

g.a,b

But the state Eq(83) is just a convex combination of states

of the form Eq.(85). Therefore, if onlyG-invariant opera-

tions are to be considered, it is always harmless to replaceommutes withQ, as doesXgg,.

axes in thex-y plane, but a shared phase standard enables
them to lock their axes together and compare their measure-
ments. Since the state prepared by Charlie is invariant under
rotations about the axis, the overall orientation in they
plane is irrelevant; only the relative orientation needs to be
fixed to identify Charlie’s state.

To be more explicit, whileX does not commute with the
charge,

Xpw = (U)a® 0, + (U @ 0 (87)

"V If Alice and Bob share a

systemA by half of a bipartite state that carries trivial total distributed reference stat/),z that is an eigenstate of

charge.

(U)a® (U,)g with eigenvalue 1, then
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[ae @ | £ )arpr (88)  distinguishable quantum states with density operapgrer
. . p1, and then she sends half of the state to Bob. In the unveil-
is an eigenstate of ing stage, Alice sends the other half of the state to Bob, so
XNV o inv (89) that he can verify whether the stateggor p;. The protocol
AN BB is binding if, after commitment, Alice is unable to change the
with eigenvalue +1. Therefore, Alice and Bob can unlock thevalue of the bit. The protocol is concealing if, after commit-
hidden bit by each measuring™ and comparing their re- Ment and before unveiling, Bob is unable to discern the value
sults. The same holds, of course, if the shared reference sts#é the bit. The protocol is secure if it is both binding and
pag iS @ mixture of eigenstates ¢6)_),® (U,)g, each with ~concealing. _ -
eigenvalue 1, as in Eq53). As Verstraete and Cirac ob- In the absence of superselection rules, unconditionally se-

served[13], quantum communication is needed to establistfUr® guantum bit commitment is impossibl8,9]. If we
this shared phase standard. imagine that the states, and p, are pure states shared by

In the absence of a shared phase standard, neither Aliddice and Bob, then if the protocol is concealing, Bob's den-
nor Bob can detect the bit encoded in the statg of Eq. sity operator(qbtamed by tracing over Alice’s systgmust
(86); however, either Alice or Bob can manipulate the bit. P& the same in both casgs;g=py g But then by the HIW
Each can measure the chageand either can apply a phase theorem[29] Alice can apply a unitary transformation to her
to the state conditioned on the charge, flippimg«|-). But  half of the state that transforms to py, so that the protocol
the property tha3’ # A indicates that the situation can be IS ot binding.
more subtle in the non-Abelian caswith nontrivial total
charge. Suppose, for example, th&=SU(2) with total A. Bit commitment with mixed states
chargej :% as in Eq.(73). Two states with the same value of

the total charge and of Alice’s charge, but different values of We reached this conclusion under the assumptionggat
) C1 1. 1 1. andp; are pure states, but we can extend the argument to the
BObS Chargev ar@_EIJA_EijB_O> and|J_§vjA_51JB_1>'

7 ! . 2°°B case were the states are mixed by appealing to the concept of
Charlie might prepare either of the linear combinations a purification of a mixed state. We will describe this exten-
1/ 1. 1 1. 1. sion in detail, as we will follow very similar reasoning in our
|£)= _§< J=5:0a= 51]820 1= 50a=500e= 1 ) discussion in Sec. VII C of bit commitment with nontrivial
v total charge.

(90) Suppose that at the start of the bit commitment protocol,
Alice and Bob share a product state® pg, where the states
wPA and pg are mixed. An equivalent way to describe Alice’s

&nitial state is to introduce the ancilla systethand a pure
tate|)ac (@ purification ofp,), such that the density opera-
I pa is obtained fromy)ac by tracing over systert:

and then distribute th&B system to Alice and Bob. Again,
neither Alice nor Bob can detect the hidden bit, but no
there is a notable asymmetry between Alice’s power an
Bob's. Since Bob has a superposition of two different charg
states, he can tamper with the hidden bit by applying a phas

cc_)r}trqlled _by the charge. Alice, on the other hand, has a pa=trc(|){(¥]) ac- (92)
trivial invariant operator algebra, and has no control over the ) ] )
shared state. Similarly, to describepg we can introduce the ancilla and

We may take this observation a step further. Suppose, fot state|¢)gp that purifiespg. Without loss of generality, we
example, thaG=SU(3) with total chargeg=8 as in Eq(76).  May assume that in each step of the protocol, Alice or Bob

Charlie might prepare either of the linear combinations ~ @Pplies a unitary transformation, so that the state of the full
systemABCD remains pure(A general quantum operation

1 _ _ _ _ _ performed by Alice, say, can be realized as a unitary trans-
[+)= &qq =8ym0da=8,05=8) % |0= 8,10 = 8,05 = 8)), formation applied jointly to Alice’s system and to an appro-
priate ancilla; therefore, the operation is unitary provided
(9D that we include this ancilla as part of the system.particu-

and then distribute thAB system to Alice and Bob. Again, lar, after the bit is committed, the state of the full system is

neither Alice nor Bob can detect the hidden bit, but further-one of the two pure statégo)agco Of |#/1)asco

more, neither one can tamper with the bit's value. If both parties are honest, the ancill@&sand D are off
However, in the non-Abelian case as in the Abelian caselimits—Alice can manipulate onlyA and Bob can manipu-

the hidden bit can be opened via local operations and classiate onlyB—and in that case the mixed state protocol and its

cal communication between Alice and Bob if they are pro-purification are completely equivalent. Furthermore, if one

vided with correlated reference systems that effectively reparty cheats, whether the other party starts out with a mixed

move the restrictions imposed by the superselection rule. State or its purification has no impact on the effectiveness of
the cheating strategy, because the honest party never touches

the purifying ancilla anyway.
Now let us see that in any quantum bit commitment pro-
tocol, one of the players can cheat successfully. First suppose
During the commitment stage of quantum bit commit- that Bob cheats. Though the honest protocol calls for Bob to
ment, Alice encodes a classical bit by preparing one of twestart our with the mixed states, a cheating Bob can throw

VII. QUANTUM BIT COMMITMENT
AND SUPERSELECTION RULES
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this state away, and replace it with the purificatiangp,

whereD is nowan ancilla system that Bob control§here- — (5 .
fore, if the protocol is perfectly concealigven when Bob — \7E v

cheats, then

posp = trac(| o) o)) asco= P1ep = trac(¥){¥a]) ascD: FIG. 2. “Purification” of a two-party game with nontrivial total
(93) charge. At the beginning of the game, the chargeCothidden
behind a brick wall compensates for Alice’s chargg, and the
Bob is unable to collect any information about the committedcharge ofD (also hiddeip compensates for Bob’s chargg. Honest
bit through any joint measurement &b. players never touch the compensating charges, but a cheating Alice
Similarly, a cheating Alice could throw away her initial Might manipulateC and a cheating Bob might manipulee
state and replace it by its purification; then Alice could con-
tbrol both A and the ancﬂla(':. Ap_plylng the HJW theorem as Ug G0 — .5, (98)
efore, we conclude that ify gp=p1 gp, then Alice can apply
a unitary transformation té\C that transformgy)apcp 10 which transformgy) to |4;). Therefore, the protocol is not
|1)asco We conclude that if the protocol is concealing, thenbinding.
it is not binding. Unconditionally secure quantum bit com-  Obviously, the same argument applies, in the Abelian
mitment is impossible, even with mixed states. That quantungase, even if the total charge is nontriviia6]. The key prop-
bit commitment is impossible even when mixed strategiesrty of the states that is used in the argument is that Alice’s
are used was proved i[B] using a slightly different ap- charge is perfectly correlated with Bob's, so tift=A.

proach.
C. Nontrivial total charge

B. Trivial total charge The property that#3’ # A in the non-Abelian caséwith
nontrivial total charge encourages one to hope that a bit

The argument in Sec. VII A shows that for an analysis of . L
ommitment protocol can be formulated whose security is

the security of quantum bit commitment, we may assum ) ;
that Alice and Bob share a pure state. But how is the securitjPinded on a non-Abelian superselection rule. lqdeed_' con-
affected if superselection rules constrain Alice’s and Bob's>der again the cas&=SU2) with total chargej=3; as in
operations? We will first consider the special case in whichEd- (73 When Alice has control of the fulAB system, she

the total charge that Alice and Bob share is trivial. After &N prepare either of the state g shown in Eq(90), and
commitment, then, Alice and Bob share one of the two purdhen she can send tigesystem to Bob. Now Bob is unable to
states|yp) or |i4), each with trivial total charge. Choosing distinguish the two states, because he cannot measure the

the Schmidt basis in each charge sector, the $fgjecan be relative phase in a superposition of two states of different
expanded as charge. Furthermore there is no invariant operation Alice can

apply that changept+) to |-) or vice versa. It seems, then,
AN 2 \EE o [3,0)a ® |g.b)g, (94) that the protocol is both concealing and binding. At any rate,

q b quantum bit commitment in a world with non-Abelian super-
selection rules seems fundamentally different from quantum
where Bob’s density operator is bit commitment in a world in which all superselection rules
are Abelian.
pos = trall X o) = 2 Pgposg (95) But, as always in a discussion of information-theoretic
q

security, we must be sure to consider the most general pos-
sible cheating strategies. And in fact, we can argue that for
the security analysis, there is no loss of generality if we
(96) assume that the charge shared by the parties is trivial, the
case we have already dealt with in Sec. VII B. This reduction
to the case of trivial total charge follows closely our discus-
Bob can measure the probability, that his charge is; sion in Sec. VII A, where we showed that it suffices to as-
therefore if the protocol is concealing, then the distributionsume that the parties share a pure state.
{pg} must be the same fory,) as for |4p). Furthermore, Consider a general two-party quantum bit commitment
Bob’s density operator in the chargesector must not de- protocol in which the initial state shared by Alice and Bob is
pend on whether the state [ig,) or |¢,); therefore|i;) can  a tensor producb, ® pg of invariant states. The statg can
be expanded as be purified if we introduce an ancill€; furthermore, the
- I pure state ofAC can be chosen to have trivial total charge.
ANEDD \s"pq > Vgp [0,0)a ® [, b)g, (97)  Similar, we can purifypg using the ancilleD, in such a way
q b that the pure state @D has trivial total charggSee Fig. 2.

. . Each operation performed by Alice or Bob can be taken to be
where{[q,b)a} is another basis for Alice’s charggsector.  a charge-conserving unitary transformation; therefore, at
But now Alice can apply a unitary transformation condi- each stage of the protocol, the state of the full systBCD
tioned on the charge that rotates one basis to the other: is a pure state with trivial total charge.

and

Pog.q= 2 N [9,bXa,b].
b
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In the honest protocol, the ancill&andD are inacces- state with trivial charge at the start of the protocol.
sible. But if Bob cheats, he can throw away the initial invari-  Note that for the proofs of Theorems 2 and 3, our obser-
ant statep, called for in the protocol, and replace it by a vations from Secs. Il and Ill on the use of reference systems
trivially charged pure state &D, whereD is now an ancilla  are not needed. Rather, to prove Theorems 2 and 3, we use
that Bob controls. Therefore, if the bit commitment prOtOCO|0n|y two properties of thd-world Superse|ecti0n sectors:
is concealing, thepogp=p, gp—Bob cannot learn anything first, that for each charge sectdf, there is a unique conju-
about the com_mitted bit from any invariant joint measure-gate charge sectditg such that the trivial sectak(; is con-
ment onBD. Since the state of the full systeABCDs a  tained in,® Hg; and second, that any invariant state has a
pure state with trivial pharge, the argument of Sec. VI Bpurification with trivial total charge. These properties hold
suffices to show that Alice can transfofi,) to [y) with an not just for the case of superselection rules arising from a

invariant local operation applied #®&C. Hence, the protocol symmetry grouf, but also for the more general superselec-

is not binding. We have proved, then, that, even when the X .
protocol calls for a nontrivial total charge, if Bob is unable to%?]g ;ufpspliﬂﬂst'ﬁiesrﬁjolg gsr?érgll Ils.e;[izzrefore, Theorems 2

cheat then Alice can cheat—unconditionally secure quanturﬁ
bit commitment is impossible. We have the following.

Theorem 2Consider a quantum bit commitment protocol
in the | world, where at the beginning of the protocol Alice VIll. TWO-PARTY PROTOCOLS IN GENERAL
and Bob share a product of invariant states. Then if the pro- A. Overview

tocol is concealing, it is not binding. _ _ .
Our proof, which reduces the case of nontrivial total We will now analyze the impact of superselection rules on

charge to the case of trivial total charge, is really just a minothe security of general two-party protocols. We will show
variant of the argument in Sec. VII A that reduces the case ofhat for any protocoP in the invariant world(I world) sub-

a protocol where Alice and Bob share a mixed state to théect to the superselection rule, there is a corresponding pro-
case where they share a pure state. tocol P in the unrestricted worldU world), whereP simu-

In the case of our bit commitment protocol in which the Jates P in the following sense: First, when performed
1

total charge ofAB is j=7, if Alice is unable to access the ponestly P andP accomplish the same task. And second, for

compensating charge i@, then she cannot cheat success- ; ;
fully. But if Alice controls the wholeAC system, then Alice’s any chegtlng strategy that can be adopted by a dishonest

chargejc=0, 1 is perfectly correlated with Bob’s, and she Party in P, there is a corresponding cheating strategyPin
can rotate the relative phase of the=0 andj,c=1 com- that is just as effective. In particular then,Rfis insecure,
ponents of her state, transformihg) to |-). then so isP. We conclude, therefore, that superselection
This reduction of a protocol with nontrivial total charge to rules cannot enhance tlimformation-theoretig security of
a protocol with trivial total charge can be generalized. In thetwo-party protocols. The methods we will use to establish
| world, consider am-party protocol in which up tk<nof  this result are quite different from those used in Sec. Il to
the parties might cheat, where the initial state is the producfeat the case of superselection rules arising from a symmetry
of invariant state_,p;, and where all operations performed group.
by the parties are required to conserve the local charge. Then gefore going into detail, we will briefly describe the main
we may imagine that each party is issued a compensatingeas used in our argument. First of all, we will restrict out
charge at the beginning of the protocol, so that each partyention to a protocol in which the total charge shared by the

2Ct/ua;”ty Stirttsf\oil:t ertnh tr:’\l/ Ialti(rzlhargrie'rThe EoFesthpar;[;ﬁs W'"r&o parties is trivial(belongs to the trivial superselection
ever touch Ineir compensating charges, but a cheating pa ctoy. We know from Theorem 3 in Sec. VII C that it suf-

cannot be prevented from performing arbitrary joint OP€Ta% 065 1o treat this special case in an analysis of security. A

tions on her system and her compensating charge. This Stragrotocol with trivial total charge has this useful property: if

egy is realizable because the cheater might throw away th lice knows that she holds chargeafter sending a message
invariant state she holds at the beginning of the protocol, an b Bob, then Alice also knows that Bob will hold the conju-

replace it by a charge-zero state that she controls fully. Fur-ate chargel upon receiving the message. Similarly, Bob

thermore, if an attack by the cheaters is successful in thgnows what Alice’s charge will be after she receives a mes-
protocol where the honest players start out with trivial 9 . . .
sage sent by Bob. Our analysis of security relies on the prop-

charge, then it will also be successful if the honest player - il
start out with a product of charged invariant states; sinczegrpe/ ?Pg;;?ebs Zﬁyﬁfimsaﬁga;?gtgcﬁ:fe does, and there-

honest players never make use of the compensating charg 'In thel world, charge is conserved, so that the total charge

their presence can have no impact on the effectiveness of th . S
attack. Therefore, we have the following. Shared by Alice and Bob is trivial at each stage of the pro-

Theorem aLet e amnpary quantum protocol e 9524 rhemore ocal aperatons perormed by e o
world that securely realizes a takk where the initial state P ge. o
in P is a product ofn invariant states. Then there is an charge need not be conserved, but the protéttilat simu-

I-world protocol P’ that also securely realizd$, where the lates thel-world protocolP can be chosen to respect conser-

trivial charge. conserved charge of tHeworld. However, a dishonest party

In other words, in a security analysis, we may assumavho is not bound to follow the protoccﬁ can perform op-
without any loss of generality that each party holds a pureerations that violate “charge” conservation. Our task is to
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ensure that the greater freedom enjoye_d_ by a dishonest party He=@H,® Hp® ngb. (101
in the U world does not enhance her ability to cheat success- ab
fully. abic . . o

For this purpose, our argument relies on the concept of th:el—he space/; ™ is n-dimensional if there ara distinguishable

formatof a message exchanged between the parties. It the "o > that a charge object can arise when objects with
gee gea b P o chargesa andb fuse. Consistency of Eq101) with associa-
world, the format is simply the Hilbert space containing the

~ o tivity of the tensor product requires th’b’s to obey certain
message. In the protocBl the recipient of a message always jgentities, but we will not discuss these further as they will
checks that the format of the message is valid, and aborts théyt he needed for our proof.

protocol if the message is invalid. A valid message corre- There js a trivial-charge sector, denotid, that behaves
sponds to one that could have been sent inl tverld, while 55 the identity under fusion,

a message is invalid only if the sender violated the local

conservation of “charge” before sending it. Thus, a message He ® Hy=He. (102
that upon receipt is found to be in the proper format could ] ) _ .

have been sent by a party who performed a chargeEurthermore, there is a unique chagethe conjugate of,
conserving local operation—in effect the sender is unable téhat can fuse withy to yield the identity

play a charge-nonconserving strategy without being detected. _

Since effective charge conservation is enforced by halting Hy= ?qu@ He: (103
the protocol when a charge nonconservation is detected, it . ) o

will be essential for our argument to consider games that can Now, in thel world, consider a bipartite system shared by
be aborted at any stage by either party. A cheating strateglice and Bob. The Hilbert space decomposes as

for the I-world protocol P and the corresponding cheating

~ H=0H,,
strategy for itdJ-world counterparP will cause the game to q O
halt prematurely with the same probability, as well as pro-
duce the same probability distribution of outcomes in the Hq= ® Hag, ® Hag, ® VgA,qB' (104

event that the game ends normally, without being aborted. aals

whereq is the total chargeg, is the charge of Alice’s sys-
B. Superselection rules and charges tem, andgg is the charge of Bob’'s system. The physical

Before proceeding to our proof, we should recall the pro operations, allowed by the superselection rule, conserve the
b 9 P P ptotal charge, and hence belong to the algebra

erties of superselection rules and charges that will be in-
voked in the argument. These properties have been explored O=aL(H,). (105)
already in Sec. V, for the special case of super-selection sec- q a

tors labeled by irreducible unitary representations of compact . i _ o
groups. Here we wish to emphasize that some of the samE€ Operations Alice can perform, which conserve Alice’s
ideas can be extended to a more general setting, and we wfi'a'ge and act trivially on Bob's system, belong to

indicate how a two-party protocol in which conserved _ qad

charges are exchanged can be simulated using ordinary qu- A= qu?qBE(HA’qA) © ley®, (106
bits.

In general, a superselection rule is a decomposition oWhere I denotes the identity acting of(gq, ® Vgae.
Hilbert space into a direct sum of sectors such that eackimilarly, the algebra of operations that Bob can perform is
sector is preserved by the allowed operations. The charge
is a label that distinguishes the distinct sectors, and we may B= @ I#x®® L(Hgg,), (107)
say that the operations allowed by the superselection rule 49 s
conserve the charge. Thus, the Hilbert space is expressed \ﬂrﬁerelﬁéd% denotes the identity acting OHA,qA® VgAﬂB_ In

contrast, the commuta®’ of B, which conserves the total

H=oH,, (99)  charge and Bob’s charge but need not conserve Alice’s, is
q
_ B'=a c(@HA,q ® ng@8> ® lg ., (108
and the allowed operations belong to the algebra adg \gp ®

®L(H), (100 whereIB,qB is the identity onHp g, and similarly
! A= © Ing,® £ ©Hog @ VEe). (109
where £(H,) denotes linear operators acting ®fy. 4 %

Depending on the particular form of the superselectionThus. A’=8 and5’=A if and only if the charges), andgg
rule, there are specific rules governing how the charge beare perfectly correlate¢there is a uniqueg corresponding
haves when a system splits into two subsystems, or wheto eachg, and vice versp This condition holds, in particu-
two systems fuse to become a single system. These rules céar, if the total charge is trivial, in which case our formulas
be encoded in vector spacVS'b defined by simplify to
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H=H1=0Haq® Hpg P, Alice or Bob might hold a coherent superposition of dif-
q ferent charges, even though the total charge is always guar-

anteed to be trivial. Therefore, the verification stefPimust
A=B"=®L(Hag) @ Isg: be performed coherently; Alice, for example, checks that
g andg, match without learning the value af or g,. If veri-
o fication fails, then the message recipient has detected cheat-
B=A"= eqalAvq ® L(Hgg)- (110 ing by the other party and aborts the protocol. If verification
succeeds, then the message has been projected onto the valid
format, and as far as the recipient is concerned, it is just as
C. Simulating charge exchange though the message had been sent in the right format to

A novelty of a two-party protocol in thé world is that ~ P€gin with. _
when Alice (for examplg sends a message to Bob, she may Whenever Alice cheats in th&J-world protocol P by
choose to split the charge she possesses into two parts—tAe0difying her charge, she risks detection, and if her cheating
charge she retains and the charge of the message that gRelndetected, then her operation is equivalent to a charge-
sends. If the total charge is trivial, then the full Hilbert spaceconserving one. Therefore, Alice has an equivalent strategy
comprising Alice’s systemd, Bob's systenB, and the mes-  in the I-world protocolP, in which she either halts the game

sage systenM can be expressed as herself with some probability before sending her message, or

if the game does not halt, performs an operation allowed by

Hi= & Hpg, ® Mgy ® Hug, @ VIA®BM. the superselection rule. This observation suffices to establish
Ua08:Am

that P simulatesP, and thus that the superselection rule can-

(111 not thwart cheating.
The isomorphisms To summarize, for the purpose of characterizing Alice’s
ability to cheat, we are only interested in how Alice’s activi-
VAdein = Vaqg'q“" = Vaqf'q“" (1120 ties will affect Bob’s measurements. Although in tdevorld

o ) i Alice has the power to violate conservation of “charge,” she
invite us to interpret Eq(111) in complementary ways— s ynable to fool Bob into accepting a message that is not
namely, the charggg of AM is conjugate to the chargg of  isomorphic to one that could have been created in Ithe

B, and the charge, of BM is conjugate to the chargp, of  \yorld. Therefore, Alice’s elevated power in thé world
A. Thus, Eq.(111) describes the splitting of Alice’s initial  gjyes her no advantage.

chargeqg into the chargeg, that she retains and the charge
qu of the message, as well as the fusion of the chaggef
the message with Bob’s initial chargg to yield Bob’s final
chargega. Furthermore, ifVjA9% s of dimension greater Having explained the main ideas, we will now present a
than 1, then a vector iv{#%9 describes the particular more formal proof of our result. To begin, we must define the
manner in which Alice performs the splitting, which in turn general notions of “protocol” and “simulation” in accord
determines the result of Bob’s fusion. with our goals. The definitions are quite natural, but there are
While the information encoded M~%M is an intrinsic  some technicalities that are necessary for the proof to work.
property in thel world, if we are to simulate the process of  We consider quantum games between two parties, Alice
charge exchange in thg world, then this information must and Bob. We assume that Alice sends the first message and
be carried by ordinary qubits. In such a simulation, the Hil-the players alternate. Tharotocol of a game specifies the
bert space of Alice’s system, Bob’s system, and the messagetal number of messages, their format, the strategies for

D. Definitions

is expanded to honest players, and a way to determine the game outcome.
- By “format” in the U world we mean the Hilbert spadg,,
H= ©  Haq, ®Hpg,® Hug, ® v ade of a given message. In theworld, we specify the space
1.2: - Hw g, for each value of the message chacge
(113 To define an honest strategy in thevorld, we specify for

but where now 2% M is to be regarded as an explicit part each. value of Alice’s charqu’her corresponding space

of the message. If the conditiong=q, and q,=qg were  /laq, likewise, we specify Bob's spackg g, for eachge.

imposed, then the “format” of this message would coincide! € game starts with a pure state

perfectly with the information content of a message sent in

the | world. But while in thel world these conditions arise |En) © |ég) € Ha1® Hg, (114

from the intrinsic physics of the superselection rule, intthe where 1 stands for the trivial charge. If one of the players

world they must be imposed by hand through proper desigisay, Alice cheats, she may use a different set of private

of the protocol. B spacesH /’\,qA' but the initial state still must be of the form
Thus, in the U-world protocol P that simulates the |£3)®|&g), Where|y) e Hp ;.

I-world protocol P, we will require the recipient of a mes- Alice’s and Bob’s actions in thkth step are described by

sage to verify its format—Alice checks thai=q, and Bob  operatorsi, ,Wg . The final outcome is determined by a pair

checks that,=gg. Of course, at a given stage of the protocol of measurements that are performed independently on Al-
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(relative to simply quitting the gaméy sending an invalid

I-world |U-world message. More formally, suppose that Alice cheats using
_ some strategﬁ’. In the corresponding strategdy’, Alice
Protocol P —|— p projects her message systéhﬂﬂ onto the subspacHy,, be-
- fore sending each message. Thus if the straﬁefgyalls for

i te ! — A’ . = ,
Alice strategy AT 9 A Alice to apply the operath,;k in the kth round, then in the

strategyA’ Alice applies the contracting maW’Ak:HVvAk,
wherell is the orthogonal projector ontd),. The strategies
A’ andA’ are equivalent: whenever a message sent accord-

Li_ng to A’ causes Bob to abort the game, the stratégy
requires Alice to abort the game herself. Similarly, given any

cheating strategfé’ for Bob in the gamef’, there is an
ice’s and Bob’s subsystems at the end of the game. We akequivalent cheating stratedy’ in P. Thus, conditions(ii)
interested in the joint probability distribution of the measure-anqiii) are satisfied an® simulatesp.
ment results. However, if one of the players cheats, only the - 5, analysis of superselection rules in Sec. VIII E will be
honest player’s subsyste'm IS .measured. , based on a closely related method of simulation.

For the reasons explained in Sec. VIII A, we will assume We also remark that Theorem 1 proved in Sec. Il can be

that the game can be aborted by either player. If the game IS ctated: for a multiparty protocoP in the G-invariant

aborted, we will not need to keep track of who ends the game ] )

game ends normally and if so what is the outcome. For thi§ase, we implicitly adopt a redundant description of the
purpose, the quantum state can be characterized by a vectysical states appearing By admitting fictitious color de-
| such thaty|¢) is the probability that the game has not grees of freedom. TheR is exactly the same protocol &
been aborted. Operations performed by each player may thémit with the color now reinterpreted as a physical variable.
be described by contracting maps, i.e., operafdsuch that ~ Similarly, Theorem 3 in Sec. VII C can be stated: angarty
W'W= 1. We assume that the game is never aborted if bott-world protocol in which the initial state is a product of
players are honest, so that the probabilities of different outinvariant states can be simulated by laworld protocol in
comes add up to 1 in the honest game. If one of the player@hich the initial state is a product ofpure states, each with
cheats, the total probability of all outcomes is generally lesgrivial charge.
than 1.

Now we define what it means for one protocokimulate

Bob strategy | B’ «— B’

FIG. 3. TheU-world protocoll~D simulatesthe I-world protocol
P if the honest protocols realize the same task, and if for any cheal

ing strategy inP there is an equivalent cheating strategyPin

another(see Fig. 3. E. Proof

Definition A protocol P simulatesthe protocolP if the Our goal is to prove the following.
following conditions are fulfilled: Theorem 4 Let P be a two-party game in the world,

(i) The honest strategies R andP give rise to the same such that both parties hold trivial charges at the beginning of
probability distribution of the outcomes. the game. Then there isl&rworld gameP that simulates?.

(ii) For any cheating strateg}’ by Alice compatible In the proof, we construct th&-world protocoll~3 that

with the protocolP, there exists an equivalent stratelyyfor ~ Simulates thé-world protocolP, and explain how the cheat-

the protocolP. (“Equivalent” means that Bob’s measurementing strategyA’ that is equivalent toA’ is formulated. We

result has the same probability distribution in both cgses. achieve this by applying the procedure for simulating charge
(i) For any cheating strated by Bob compatible with exchange in théJ world that was described in Sec. VIII C.

~ . . , Consider thel-world protocol P. If the total charge is
the protocolP there is an equivalent strate@y for the pro- trivial, then the full Hilbert space including Alice’s systefn

tocol P. : ;
Note that when we say that the two cheating strategies arI(3eObs systemB, and the messagd is
equivalent, we mean in particular that the probability that the H= & Hpg, ® Hpg, ® Hyg, ® Virem,
game ends normally is the same for both strategies. dadedy e o
To better understand our concept of simulation, it is very (115

helpful to consider this simple example: Suppose that the

message spadéey of P is embedded in a larger spakg, of Without loss of generality, e asstme that the spacgg,,

~ S~ Hp gy Humg, are the same in each step of the protocol. We
P. Honest _pla)_/e_rs fOII(.)W the same sirategie®ias inP, so may also assume that the message is present at the beginning
that condition(i) is obviously satisfied. However, the players

and at the end of the game and that the initial state has the
in P must be prepared to receive messages that do not obeyrm |£,) ® | &) ®|0), where|0) e Hy.1-

the format ofP, i.e., do not fit into the subspadg,,. In P Each time Alice receives one message and sends another,
such messages are rejected, and the game is aborted. Thlse applies an operator #M that preserves Bob's charge
rule prevents a dishonest player from gaining any advantag@g; this is a contracting map belonging to the algebra
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@ﬁ( ® Hag, ® Hug, vaqu,qm). (116 Hau=Ha® Hu=HA® ( & Hyn gy, ® VIATRM).
B dadm da:ds.Adm
Alice’s honest strategy consists of a sequence of such (121

operators—in thé&th step she applies an operat, . Simi-

. ) In particular, when Alice cheats, her action on the message
larly, Bob's honest strategy is defined by operatds.

- need not respect the conditiog=q,. To prove the theorem,
Now consider theJ-world protocol P that simulates?.  we are to define an equivalent cheating strategy for the game
The Hilbert space oP is P. _ _ _ _
When Alice cheats inP, she uses an arbitrary Hilbert
H = ﬂA ® 7~_(B ® ﬂM, (117 spaceH’A’qA for each value of her chargg, and she applies

operatorsW’Ak that conserve Bob’s chargg to the space
where

B B Hau= @® Hpg ®Huyg, ® VMM (122
Ha= ?HA,ql, Hg = ?HB,qZ- 0a0B:AMm
' : The space$t,,, andH,, seem to be distinct—ift,,, the

~ charge label carried b’gﬂ,g’qA matches the label in one of the

= VAU 11 Lk . .
Hw qA(?;qMHM i © (118 slots of V{49 while in H,,, there is no such correlation.

5 However, in theU world the variableg, would be encoded
Thus the spacé{ of the protocolP can be embedded ik redundantly if it appeared in bol‘HA andVia9% M and it
by requiringg; =g, and g,=0g. In p these constraints are iS not necessary to adopt this redundant encodlng in order to
enforced by checks performed by both parties. A dishonestmulate the physics of thieworld. Instead, let us specify
player’s attempt to break the constraints will be detected im#¢; qA_HA for eachga—thenH and7'—(AM are of the same
mediately by the other party, in which case the game williorm, but where it is understood in E6L21) that the infor-

hallt. ~ mation about the chargg, is carried only byv A%, With
Let us describe Alice’s honest strategyRnWhen Alice  thjs choice Alice’s operatdWj, in P and her operatdi, in

receives a message, she gains control of the sfigge P act on isomorphic spaces; howeve, must conserve
®HM First she verifies thad;=q, (without determining the Bob's chargegg,
value ofq, or g,); if verification fails, she aborts the game.
Thus Alice effectively projects her input state onto the sub-
space

while WAk need not conserve charge.

Therefore, we define the corresponding cheating strategy
in P by specifying

= > g Wi Il 123
Ham= & Hag, ® Hug, ®VquBqMcHA®HM %B: 98" A a8 (123
da.9B:9m
(119 WhereHqB is the projector onto the subspace with the given
value ofgg. That is,HqB projectsﬂM onto the space in which
VA9 has the valuayg in the appropriate slot. The con-
tracting map\N,&k preservesg)g and therefore is admissible in

the protocolP. Applying this W,;k causedAlice to abort the

Then she applies the operatdf, (from the protocolP),
which acts oriH 5, and preservegg. Thus Alice’s strategy is
defined by the contracting maps

\7VA =FW, F', (1200 9ameP in the case whereg would change in the game.

K K But in that case the new value gf would not match Bob’s
where E denotes the embeddinyAM—>7-(A®7-lM. Bob's variableqy; theiefore,BobwouId reject AIice’i message and
honest strategy is defined similarly. abort the gamé. Hence the two game? andP are aborted

If both players play the gam% honestly, then the verifi- with the same erobakliIity; furthermore, the final state that
cation always succeeds and the conditi@gsg, and g, Bob measures i, if P does not abort, is identical to the
=qg are maintained throughout the game. Thus the honedtnal state thqt Bob measuresiif P does not abort. There-
strategies foP and P are clearly equivalent. Note that fore, when Alice cheats, Bob’s measurement outcome has the
some information is encoded redundantly—for example, Al-same probability distribution i? as inP. The same is true
ice can access the value @f by examining either the charge for Alice’s measurement when Bob cheats. Therefd?e,
label of 7 q, or one of the slots of the tensA%M;  simulatesP, which completes the proof of Theorem 4.
similarly gy is encoded both ity q and in Vadeam,

However, this redundancy has no deleterious effect on the IX. CONCLUSIONS

fidelity of the simulation. . .
Recent progress in the theory of quantum computation
Now suppose that Alice cheats in the gaFneThen she  .nd quantum cryptography highlights the importance of
may use an arbitrary Hilbert spadéj and operatorSNA adopting a computational model compatible with fundamen-
acting on tal physics—tasks that would be impossible in a classical
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world may be physically realizable because Nature isAlice, accompanied by a compensating change in the total
quantum-mechanical. Further refinements of the model couldharge held by Bob and Charlie, even though the local
lead to further insights regarding what information- charge in Bob’s lab, and in Charlie’s, is unaltered. Though
processing tasks are achievable. Therefore, as Pop&8tu strictly speaking Alice’'s operation is not “local,” she can
emphasized, the impact of superselection rules on the secaarry it out surreptitiously, without any cooperation from
rity of quantum protocols is of considerable potential inter-Bob and Charlie. Such new possibilities enhance the poten-
est. However, our disappointing conclusion is that supersetial power of cheaters, but may also provide the honest par-
lection rules cannot foil a cheater who has unlimitedties with new methods for detecting cheating. Addressing the
quantum-computational power. security of multiparty quantum protocols subject to general

Contemplating this issue has led us to consider how physsuperselection rules will require different methods from
ics in the invariant world can simulate physics in the unre-those we have used in this paper, and might provide further
stricted world, and vice versa. We feel that the simulationenlightenment concerning the physics of non-Abelian
schemes we have devised offer fruitful insights into theanyons.
physical meaning of superselection rules.
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Robust quantum parameter estimation: Coherent magnetometry with feedback
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We describe the formalism for optimally estimating and controlling both the state of a spin ensemble and a
scalar magnetic field with information obtained from a continuous quantum limited measurement of the spin
precession due to the field. The full quantum parameter estimation model is reduced to a simplified equivalent
representation to which classical estimation and control theory is applied. We consider both the tracking of
static and fluctuating fields in the transient and steady-state regimes. By using feedback control, the field
estimation can be made robust to uncertainty about the total spin number.
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[. INTRODUCTION an applied magnetic fiel]. In this work, we investigate the
) ) ) ) theoretical limits of such an approach and demonstrate that
As experimental methods for manipulating physical sys-yn external magnetic field can be measured with high preci-

tems near their fundamental quantum limits impr¢2e8],  gjon despite substantial ignorance of the size of the spin en-
the need for quantum state and parameter estimation metQgmple.

ods becomes critical. Integrating a modern perspective ON The paper is organized as follows. In Sec. II, we provide
quantum measurement theory with the extensive methodoloy general introduction to quantum parameter estimation fol-

gies of classical estimation and control theory provides inqoyeq by a specialization to the case of a continuously mea-
sight into how the limits imposed by quantum mechanicsgreq spin ensemble in a magnetic field. By capitalizing on
affect our ability to measure and control physical systemshe Gaussian properties of both coherent and spin-squeezed
[6-9. ) . states, we formulate the parameter estimation problem in
~ In this paper, we illustrate the processes of state estimag,ch 4 way that techniques from classical estimation theory
tion and control for a continuously observed, coherent spiy,ny 1o the quantum system. Sec. Il presents basic filtering
ensemblg(such as an optically pumped cloud of atgms a4 control theory in a pedagogical manner with the simpli-
teracting with an external magnetic field. In the situationfjgq spin model as an example. This theory is applied in Sec.
where the magnetic field is either zero or well characteriz_edl,v, where we simultaneously derive mutually dependent
continuous meas_ureme(&.g., via the dispersive phase shift magnetometry and spin-squeezing limits in the ideal case
or Faraday rotation of a far off-resonant probe b@an  \here the observer is certain of the spin number. We con-
produce a spln-squeezed stpi@] c_ond_ltlo_nEd on the mea- gjger the optimal measurement of both constant and fluctu-
surement record11]. Spin-squeezing indicates internal en- 4iing fields in the transient and steady-state regimes. Finally,
tanglement between the different particles in the ensemblge show in Sec. V that the estimation can be made robust to

[12] and promises to improve precision measuremg®  ncertainty about the total spin number by using precision
When, however, the ambient magnetic environment is eithefgedpack control.

unknown or changing in time, the external field can be esti-
mated by observing Larmor precession in the measurement
signal [2,14-16, see Fig. 1. Recently, we have shown that
uncertainty in both the magnetic field and the spin ensemble
can be simultaneously reduced through continuous measure- First, we present a generic description of quantum param-
ment and adequate quantum filterifigy]. eter estimatiorj6—9]. This involves describing the quantum
Here, we expand on our recent resulfis/] involving  system with a density matrix and our knowledge of the un-
Heisenberg-limited magnetometry by demonstrating the adknown parameter with a classical probability distribution.
vantages of including feedback control in the estimation pro-The objective of parameter estimation is then to utilize infor-
cess. Feedback is a ubiquitous concept in classical applicanation gained about the system through measurement to
tions because it enables precision performance despite tlwnditionally update both the density matrix and the param-
presence of potentially large system uncertainty. Quantureter distribution. After framing the general case, our particu-
optical experiments are evolving to the point where feedbackar example of a continuously measured spin ensemble is
can been used, for example, to stabilize atomic motiornntroduced.
within optical lattices[4] and high finesse cavitid®]. Re-
cently, we demonstrated the use of feedback on a polarized
ensemble of laser-cooled cesium atoms to robustly estimate A. General problem

IIl. QUANTUM PARAMETER ESTIMATION

The following outline of the parameter estimation process
could be generalized to treat a wide class of problédns
*Electronic address: jks@caltech.edu crete measurement, multiple parametebsit for simplicity,
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FIG. 1. () A spin ensemble is initially prepared in a coherent-state polarized alomgh symmetric variance in thg andz directions.
Subsequently, a field along causes the spin to rotate as theomponent is continuously measurgd) Experimental schematic for the
measurement process. A far-off-resonant probe beam traverses the sample and mease@spbaent of spin via Faraday rotation. The
measurement strength could be improved by surrounding the ensemble with a @\iyperimental apparatus subsumed by Eiant
block, which serves to map the total field to the photocurretij,— y(t).

we will consider a continuously measured quantum system
with scalar Hamiltonian parametef and measurement (O)(1) = f p(6,t)6do,
recordy(t).
Suppose first that the observer has full knowledge of the
parameterd. The proper description of the system would
then be a density matrip,(t) conditioned on the measure- (A1) = f p(6,t)(6 - (6))d6,
ment recordy(t). The first problem is to find a rule to update
this density matrix with the knowledge obtained from the ) )
measurement. As in the problem of this paper, this mappingnd derive their update rules from the full update rules, re-
The SME is by definition a filter that maps the measurementhose differential equations are closed, then this reduced de-
record to an optimal estimate of the system state. scription is adequate for the parameter estimation task at
Now if we allow for uncertainty ing, then a particu|ar|y hand. This SitU&tiOl’(With closure and Gaussian distribu-

intuitive choice for our new description of the system is  tions) is to be expected when the system is approximately
linear.

p(t) = Lpo(t)p(ﬁ,t)dﬁy (1)

B. Continuously measured spin system

where p(6,t) is a probability distribution representing our  This approach can be applied directly to the problem of
knowledge of the system parameter. In addition to the rulgnagnetometry considered in this paper. The problem can be
for updating eaclp(t), we also need to find a rule for up- symmarized by the situation illustrated in Fig. 1: a spin en-
dating p(#,t) according to the measurement record. By re-semble of possibly unknown number is initially polarized
quiring internal consistency, it is possible to find a Bayesalong thex axis (e.g., via optical pumping an unknown
rule for updatingp(6,t) [6]. These two update rules in prin- possibly fluctuating scalar magnetic fidddlirected along the
ciple solve the estimation problem completely. y-axis causes the spins to then rotate within X plane,
Because evolving(t) involves performing calculations and thez-component of the collective spin is measured con-
with the full Hilbert space in question, which is often com- tinuously. The measurement can, for example, be imple-
putationally expensive, it is desirable to find a reduced demented as shown, where we observe the difference photocur-
scription of the system. Fortunately, it is often possible torent, y(t), in a polarimeter which measures the Faraday
find a closed set of dynamical equations for a small set ofotation of a linearly polarized far-off-resonant probe beam
moments ofp(t). For example, ifc is an operator, then we traveling alongz [2,14,18. The goal is to optimally estimate

can define the estimate moments b(t) via the measurement record and unbiased prior informa-
tion. If a control fieldu(t) is included, as it will be eventu-
(©)(t) = Trlp(t)c], ally, the total field is represented tgt)=h(t)+u(t).
In terms of our previous discussion, we have here the
(A (t) = Tr{p(t)(c - (c))?], observablec=yMJ,, whereM is the measurement rafde-
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fined in terms of probe beam paramejeesd the parameter appears classical, and assumes an actual, but random, value
0=b. Whenb is known, our state estimate evolves by thefor the z component of spin. This correspondence generally
stochastic master equatigh9] holds for a stochastic master equation corresponding to an
— R — arbitrary linear guantum-mechanical system with continuous
dpp(t) = —i[H(b), py(t) Jdt+ D[VMI ] pp(t)dt+ Ny H[VMI,] measurement of observables that are linear combinations of
the canonical variable0].

X(2\Mnly()dt = (It po(0), (2) From this point on we will only consider the simplified
whereH(b)=J,b, y is the gyromagnetic ratio, and Gaussian representationsed in the following sectigrsince
it allows us to apply established techniques from estimation
D[c]p = cpc’ - (c'cp + pcle)/2, and control theory. The replacement of the quantum me-
chanical model with a classical noise model is discussed
Hlclp=cp+pc - Tr(c+cNplp. more fully in the Appendix. Throughout this treatment, we

keep in mind the constraints that the original model imposed.

The stochastic quantity M 7[y(t)dt—(J,),()df]=dWt) is  Adain, we assumé is large enough to maintain the Gaussian
a Wiener incrementGaussian white noise with variance @PProximation and that time is small compared to the mea-
dt) by the optimality of the filter. The definition of the Surement induced damping rates 1/M. Also, the descrip-
photocurrent may be scaled by any constant gain factor, dion of our original problem demands thatJ;)(0)=J/2 for
in Ref.[17], as long as the statistics of the SME remains@ coherent stat¢32]. Hence our prior information for the
invariant. The sensitivity of the photodetection p&iz is initial value of the spin component will always be dictated
represented by 1AMz, where the quantity; represents Py the structure of Hilbert space.
the quantum efficiency of the detection. #=0, we are
essentially ignoring the measurement result and the con- 1. OPTIMAL ESTIMATION AND CONTROL
ditional SME becomes a deterministic unconditional mas-
ter equation. Ify=1, the detectors are maximally efficient. = We now describe the dynamics of the simplified represen-
Note that our initial state(0)=py(0) is made equal to a tation. Given a linear state-space mode), a quadratic per-
coherent statépolarized inx) and is representative of our formance criterion(Q), and Gaussian noisgs), we show
prior information. how to apply standard LQG analysis to optimize the estima-

The stochastic master equation, E8), has previously ~tion and control performance1]. _ _
been derived for homodyne detection of the output of a cav- The system state we are trying to estimate is represented
ity with a single mode dispersively coupled to the collective Py

atomic spin within the cavity19]. The resulting form of the State.

equation is, however, the most generic form of a continuous

stochastic QND measurement and also applies under similar (1) = 2(t) 4
approximations to the free space Faraday rotation measure- b(t)

ment[18] diagrammed in Fig. 1. )
It can be shown that the unnormalized probabipfyp,t)  Wherez(t) represents the smailcomponent of the collective

evolves according t§6] angular momentum analt) is a scalar field along the axis.
Our best guess oK(t), as we filter the measurement
dp(b,t) = 4M 73 (1) p(b, D)y (t)dt. (3)  record, will be denoted as
The evolution Egs(2) and(3) together with Eq(1) solve the Estimate.
problem completely, albeit in a computationally expensive [E(t)]
way. Clearly, for large ensembles it would be advantageous mt) = |- . (5)
to reduce the problem to a simpler description. b(t)

If we consider only the estimate momentd)(t), ) ) o )
(AJE)(t), (b)(t), and(Ab?)(t) and derive their evolution with As stat~ed in the Appendix, we |mpJ|C|tIy make the associa-
the above rules, it can be shown that the filtering equationions: Z()=(Jp(®)=Tr{p(t)J,] and b(t)=/p(b,t)b db, al-
for those variables are closed under certain approximationghough no further mention os(t) or p(b,t) will be made.
First, the spin numbed must be large enough that the dis- We assume the measurement induced dampintofbe
tributions for J, and J, are approximately Gaussian for an negligible for short timegJ ex{ -Mt/2]~=J if t<1/M) and
x-polarized coherent state. Second, we only consider timegpproximate the dynamics as
t<1/M because the total spin becomes damped by the mea- Dynamics.
surement at times comparable to the inverse of the measure-
ment rate.

Although this approach is rigorous and fail-safe, the re-
sulting filtering equations for the moments can be arrived at
in a more direct manner as discussed in Appendix A. Essen- [

dx(t) = AX(t)dt + Bu(t)dt + { 0— ] dw;, (6)
VOhE

tially, the full quantum-mechanical mapping frdmt) to y(t)
is equivalent to the mapping derived from a model which

0 VJ}
O_')’b,
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vJ sents the sensitivity of the measuremevitjs the measure-
B= ol ment rate(with unspecified physical definition in terms of
probe parameteysand 7 is the quantum efficiency of the
measurement. The incremend$V; and dW, are uncorre-
20 = |:0-20 0 :| , lated.
0 on Following Ref.[21], the optimal estimator for mapping
y(t) to m(t) takes the form
[O 0 } Estimator.
21 = )
0 our

dm(t) = Am(t)dt+ Bu(t)dt+ K o(t)[ y(t) — Cm(t)]dt, (9)
where the initial value(0) for each trial is drawn randomly

from a Gaussian distribution of mean zero and covariance 0

matrix X,. The initial field variancer, is considered to be m(0) = [ ]

due to classical uncertainty, whereas the initial spin variance

o, 1S inherently nonzero due to the original quantum state

de.scrlptl.on. Specifically, we |mpose.20:<A.J§>.(0).. The. Ko() = S()CTS5Y, (10)
Wiener incremendW,(t) has a Gaussian distribution with

mean zero and varianch. X, represents the covariance ma-

trix of the last vector in Eq(6). dx(t) =3, +AS(D) + S(HAT - Z(HCTS;ICI (1)

We have given ourselves a magnetic-field control input, dt 2 '
u(t), along the same axiy, of the field to be measurel(t).
We have allowedb(t) to fluctuate via a damped diffusion P
(Ornstein-Uhlenbecdkprocesg22] 3(t) = [ z 0 CR(t) } (12)

J— Ocr\l)  OpR
db(t) = - ypb(t)dt + VopedW . (7)

The b(t) fluctuations are represented in this particular way 3(0)=3,= o0 O (12)
because Gaussian noise processes are amenable to LQG 0 0 opl

analysis. The variance of the field at any particular time is
given by the expectation oyree=E[b(t)?]=0ye/2,,.
(Throughout the paper we use the notatix(t)] to rep-

resent the average .Of the generally stocha§t|c va}rlx’(lb)e filter. The estimator is designed to minimize the average qua-
at the same point in time, over many trajectorieghe

. 2 . NP
bandwidth of the field is determined by the frequengy dratic estimation error for each variabl:(z(t)-Z(t))<] and

alone. When considering the measurement of fluctuatindeL(0(t) =b(1))?]. If the model is correct, and we assume the
fields, a valid choice of prior might bep,=opree but we — Observer _chooses h|s_p_r|_or informati®(0) to match the
choose to letr,, remain independent. For constant fields, actual variance of the initial dafs,, then we have the self-

Equation(9) is the Kalman filter which depends on the
solution of the matrix Riccati equatiol0). The Riccati
equation gives the optimal observation g#lnp,(t) for the

we setoyree=0, but oy # 0. consistent result
Note that only the small angle limit of the spin motion is 5
considered. Otherwise we would have to consider different o,e(t) = E[(z(t) = Z(1)%] = o,R/(1),

components of the spin vector rotating into each other. The

small angle approximation would be invalid if a field caused ~

the spins to rotate excessively, but using adequate control ope(t) = E[(b(t) - b(t))?] = opR(1).
ensures this will not happen. Hence, we use control for es-

sentially two reasons in this paper: first to keep our smalfi€nce, the Riccati equation solution represents both the ob-
angle approximation valid and second to make our estimaS€rver gain and the_expected performance of an optimal filter
tion process robust to our ignorance bf The latter point  USing that same gain.

will be discussed in Sec. V. Now consider the control problem, which is in many re-
Our measurement cf is described by the process spects dual to the estimation problem. We would like to de-
Measurement. sign a controller to map(t) to u(t) in a manner that mini-
- mizes the quadratic cost function
y(t)dt= CX(t)dt + Vo dWs(t), Minimized cost.
T
c=[1 0], (®) H= J [XT(DPX() + u®)Qu(t)]dt + X' (T)PX(T), (13)
0
225 oy = 1/4M 7,
where the measurement shot noise is represented by the p= p 0
Wiener incrementdW,(t) of variancedt. Again, Vo, repre- 0 0]
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Q=gq, A ~BK¢

alt) = KLM®C A’ —B’KL-K4BC |’ (7

whereP; is the end-point cost. Only the ratjw'q ever ap-
pears, of course, so we define the paramateryp/q and

use it to represent the cost of control. By setting> », as 0 0
we often choose to do in the subsequent analysis to simplify \"T 0
|ObF

results, we are putting no cost on our control output. This is B(t) =
unrealistic because, for example, makixgrbitrarily large

implies that we can apply transfer functions with finite gain

at arbitrarily high frequencies, which is not experimentally

possible. Despite this, we will often consider the limit  \here the covariance matrix oW is dt times the identity.

— = t0 set bounds on achievable estimation and control pefyow the quantity of interest is the following covariance ma-
formance. The optimal controller for minimizing EAL3) iS  yix:

0 \“/O-_MKé)l(t)

0 VoK)

o O O O
o O O o

Controller. Total state covariance
u(t) =~ Kc(t) rﬁ(t)' (14) Oz; Ozn O3z Ogzp
_ > o [0z O Oy Opp
Ke) =Q'B™V(T-1), o) =E[6n e m]=| ® ™ "
05 O Oz O
dv(T o5 oW o5 O
—d(T ) op ATV(T) + V(T)A - V(T)BQ BTV(T), zb Tbb b Tbb
(18)
V(T=0 = P;. (15 0;= E[Z(t)z]-

HereV(T) is solved in reverse tim&, which can be inter-
preted as the time left to go until the stopping point. Thus if
T— o, then we only need to use the steady state of\the
Riccati equation(15) to give the steady-state controller gain =i

K¢ for all times. In this case, we can ignore tfreversg . ) _

initial condition P, because the controller is not designed to!t ¢an be shown that this total covariance matrix obeys the
stop. Henceforth, we will mak& ¢ equal to this constant deterministic equations of motion.

steady-state value, such that the only time varying coeffi- 10tal state covariance dynamics

ozn= E[z()b(1)],

results in the ideal case, but is helpful otherwise. Our goal is

to collect the above equations into a single structure which , t N T
can be used to solve the nonideal problem. We define the + fo dt’'exp - f a(s)ds|B(t")B(t")
total state of the system and estimator as ‘

t
Total state Xexp|:— J aT(S)d5:|,

cients will come fromK (t). 400
In principle, the above results give the entire solution to — = a()O(t) + O(t)a(t) + B(1) BT(1), (19
the ideal estimation and control problem. However, in the dt
nonideal case where our knowledge of the system is incom-
plete, e.g.,J is unknown, our estimation performance will v b
suffer. Notation is now introduced which produces trivial O(t) = ex _L a(t’)dt’ |@gex ‘foa (t')dt
t

z(t)
it = {z(o]_ b(t) 16 (20
m(t) ~Z(t) 65 0 00
b(t) 0. 0 o0 00
Consider the general case where the observer assumes the ° o o o of
plant contains spid’, which may or may not be equal to the 0O 0 00

actuald. All design elements depending dhinstead of] are

now labeled with a prime. Then it can be shown that the totaEquation(20) is the matrix form of the standard integrating

state dynamics from the above estimator-controller architecfactor solution for time-dependent scalar ordinary differential
ture are a time-dependent Ornstein-Uhlenbeck process, equationg22]. Whether we solve this problem numerically

Total state dynamics or analytically, the solution provides the quantity that we
. . . ultimately care about.
de(t) = a(t) a(t)dt+ B(t)dWt), Average magnetometry error
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# 0). The performance saturates because one can track a field
only so well if the field is changing and the signal-to-noise
ratio is finite. If the field to be tracked is constant, thign
= and the sloped portion of the curve extends to zerb as
— o (given the approximations discussed in Sec.)ll After
the point where the performance saturdtest,), all of the
observer and control gains have become time independent
and the filter can be described by a transfer function.
However, as will be shown, applying only this steady-
state transfer function is nonoptimal in the transient regime
(t;<t<t,), because the time dependence of the gains is
clearly crucial for optimal transient performance.

_
S

3

Average Field Estimation Error
S

—
o,

: = Spr(t) |

ot a0 10"
Time A. Steady-state performance
F_IG. 2. The Riccati equation solution gives the ideal field esti-  \ye start by examining the steady-state performance of the
mation performance. The parameters used hereJa®, o fijter. At large enough timegwhere we have yet to define

=J/2 (for ensemble of spin-1/2)s y=10°, M=10", 00=0pfree large enoug)) Ko becomes constant and if we sBt- o
=1. (All quantities within the figures are kept dimensionless, al- . . i :
though expressions within the text may be interpreted as havinggnorlng the end-point coptthenK is always constant.

dimension) The solution starts at the free field fluctuation variance ettingdX/dt=0 anddv/dt=0 we find

and saturates at,s The plot is not valid at times>1/M. o
V2R %
ape(t) = EL(b(D) - b(1))?] Kolt) — M ,
~ ~ IbF _ ﬁ( 2] ) + )/2 — )
= E[b(1)] + E[b(t)] - 2E[b(1)b(1)] ow W\ VNG, TR

= opp(t) + opp(t) = 20755(1). (21
When all parameters are knowland J'=J), this total Kc(t) — {)\ 1/(1+%)],
state description is unnecessary becatg€t) = op(t). This YA

equality is bydesign However, when the wrong parameters yhere)\ = /p/q.
are assumede.g.,J’ # J) the equality does not hold,g(t) Now assuming the gains to be constant, we can derive the

# opr(t) and either Eqs(19) and (20) must be used to find Fhree relevant transfer functions froyft) to m(t) (z andB)

(;bE(t)' I?efore adqresslngdth|ls problemr; we clclmn5|der in detalandu. We proceed as follows. First, we express the estimates
the performance In the ideal case, where all system paramy torms of only themselves and the photocurrent
eters are known by the observer, includihg

At this point, we have defined several variables. For clar- di(t) R .
ity, let us review the meaning of several before continuing. at =Am(t) + Bu(t) + Ko[y(t) - Cm(t)]
Inputs to the problem include the field fluctuation strength
opr EQ. (7), and the measurement sensitivity;, Eq. (8). =Am(t) + B[- Kcm(t)] + Kol y(t) = Cm(t)]

The prior information for the field is labeled,, Eq.(12).
The solution to the Riccati equationagg(t), Eq.(11), and is

equal to the estimation varianeg(t), Eq. (21), when the  Tq get the transfer functions, we take the Laplace transform
estimator model is correct. In the following section, we ad-of the entire equation, use differential transform rules to give
ditionally useay,s Eq.(24), anday,(t), Eq.(25), to represent s factors(wheres=jw, j=y-1), ignore initial condition fac-
the steady state and transient valuesrgf(t), respectively.  tors, and rearrange terms. However, this process only
gives meaningful transfer functions if the coefficietts
IV. OPTIMAL PERFORMANCE: J KNOWN andKc are constant. Following this procedure, we have

= (A - BKC_ KoC)rﬁ(t) + Koy(t)

Wg start by obs_erving_ qualitative characteristics of _the M(s) = (sl — A +BK ¢+ KoC) K oy(s) = ém(s)y(s),
b-estimation dynamics. Figure 2 shows the average estima-
tion performancegg(t), as a function of time for a realistic B L i
set of parameters. Note thatg is constant for small and ~ U(S) =~ KcmM(s) = —Kc(s—A +BKc +KoC)Koy(s)
large times, below,; and abovd,. If gy, is noninfinite then =Gy(9)y(9),
the curve is constant for small times, as it takes some time to
begin improving the estimate from the prior.df, is infinite, ~ where
thent;=0 and the sloped transient portion extends towards
infinity as t—0. At long times, o,z Will become constant 2 _| GA9

: . d ) . Gm(s) = .
again, but only if the field is fluctuatingo,r# 0 and v, Gp(9)
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whereGy ¢ is the gain at high frequenciés® > wy) and we
find the closing frequency wc from the condition
|P,(joc)Gy(joc)|=1, with the plant transfer function being
the normal integratoP,(s)=+vJ/s. Notice that the controller
closes in the very beginning of the flat high-frequency region
(hence with adequate phase majdiecausaoc=2wy.

Finally, consider the steady-state estimation performance.
These are the same with and without contience\ inde-
pendent and, under the simplifying assumptiond
> y2\ oyl ope, are given by

Magnitude (dB)

Phase (deg)

L N —
() = N2yl oie = 03s (23
Frequency (rad/sec)
2
£ 34 1a_
FIG. 3. The Bode plot 06,(s), the transfer function of the filter TpR(t) — V " ObrOm = Obs: (24)

in steady state, for a typical parameter regime. Notice that the con-

troller closes the plant with adequate phase margin to avoid closedf the estimator reaches steady statet&l/M, then the

loop instability. At high frequencies the controller rolls off @ if above variancer,g represents a limit to the amount of spin

N # o0, squeezing possible in the presence of fluctuating fields.
Also the J scaling of the saturated field sensitiviby,g

The three transfer functionG,(s), Gp(s), and G,(s)] oc\]‘.l’2 is not nearly as strong as tlescaling in the transient

serve three different tasks. If estimation is the concern, theReriodoyrJ™2 Next, we demonstrate this latter resuilt as we

Gy(s) will perform optimally in steady state. Note that, while MoVe from the steady-state analysis to calculating the esti-

the Riccati solution is the same with and without congtol ~ Mation performance during the transient period.

nonzero or zery this transfer function is not the same in the

two cases. So, even though the transfer functions are differ- B. Transient performance

ent, they give the same steady-state performance.

: We now consider the transient performan f the ideal
Let us now consider the controller transfer functi®y(s) e now consider the transient performance of the idea

: ) _ filter: how quickly and how well the estimator-controller will
in more detail. We find the controller to be of the form lock onto the signal and achieve steady-state performance. In
1+5wy _ (22) many control applications, the transient response is not of
(1 +5wg)s o interest because the time it takes to acquire the lock is neg-
ligible compared to the long steady-state period of the sys-
Here each frequency represents a transition in the Bode tem. However, in systems where the measurement induces
plot of Fig. 3. A similar controller transfer function is de- continuous decay, this transient period can be a significant
rived via a different method in Appendix C. portion of the total lifetime of the experiment.
If we are not constrained experimentally, we can make the e will evaluate the transient performance of two differ-
approximations\2> \Naye/ ow/2yd and yI> ¥iVoul/oue  ent filters. First, we look at the ideal dynamic version, with

Gy(s) = Gu,DCl +

giving time-dependent observer gains derived from the Riccati

1+dwy equation. This limits to a transfer function at long times
Gu(s) — GU’Dcl +do when the gains have become constant. Second, we numeri-
cally look at the case where the same steady-state transfer

L — Vo, functions are used for thentire duration of the measure-

ment. Because the gains are not adjusted smoothly, the small

o [y |obe time performance of this estimator suffers. Of course, for

H 2 Voyu' long times the estimators are equivalent.

1. Dynamic estimation and control
(o
wc — \/27J\/—DF=2wH, Now consider the transient response Bft) [giving
Im Ko(1)]. We will continue to impose tha¥ (thusK) is con-

stant because we are not interested in any particular stopping
wg— Ay, time.
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TABLE I. Field tracking error,og(t), for different initial variences ob andz.

0h0=0 Tho Opo—*
0,0=0 0 oo (3o + VPP oot ! Bow (2437
050 0 120000 (0 + 0 0) 1202, + PP o000t 120 (o + 00 (VPP (4o + ogt)) L
+40’M(30'20t+ ’yZJZtsUbo)
Tp—® 0 1201500 (120 + Y2 3t30p0) 1 1200 (Y3371
The Riccati equation foB(t) [Eq. (10)] appears difficult Now consider the dual problem of spin estimation perfor-

to solve because it is nonlinear. Fortunately, it can be reduceghanceo,(t) as represented in Table I, where we can make
to a much simpler linear problem. See Appendix B for ananalogous tradeoff observations. If there is no field present,
outline of this method. we setopp=0 and

The solution to the fluctuating field problega,: # 0 and
% # 0) is represented in Fig. 2. This solution is simply the o) = 000Mm (26)
constant field solutiorio,e.=0 and,=0) smoothly saturat- z
ing at the steady-state value of E@4) at timet,. Thus,
considering the long-time behavior of the constant field soWhena,«t) is interpreted as the quantum variagdel?)(t),
lution will tell us about the transient behavior when measur-his is the idealnondampejlconditional spin-squeezing re-
ing fluctuating fields. Because the analytic form for the con-sult which is valid at<1/M, before damping id begins to
stant field solution is simple, we consider only it and take effec{19]. If we consider the solution fdr=>1/JM, we
disregard the full analytic form of the fluctuating field solu- have the lower left entry of Table lir,&t) =0 /t. However,

Om +t0'20.

tion. if we must include constant field uncertainty in our estima-
The analytic form of%(t) is highly instructive. The gen- tion, then our estimate becomes the lower right ents(t)
eral solutions tar,g(t) and o,&(t), with arbitrary prior infor-  =40y,/t which is, again, a factor of 4 worse.

mation o,y and o, are presented in the central entries of If our task is field estimation, intrinsic quantum mechani-
Tables | and I, respectively. The other entries of the tablesal uncertainty ire limits our performance just as, if our task
represent the limits of these somewhat complicated express spin-squeezed state preparation, field uncertainty limits
sions as the prior information assumes extremely large oour performance.
small values. Here, we notice several interesting tradeoffs.

First, the left-hand column of Table | is zero because if a 2. Transfer function estimation and control
constant field is being measured, and we start with complete
knowledge of the field o,p=0), then our job is completed
trivially. Now notice that if oy,g and o are both nonzero,
then at long times we have the lower right entry of Table |

Suppose that the controller did not have the capability to
adjust the gains in time as it tracked a fluctuating field. One
approach would then be to apply the steady-state transfer

'functions derived above for thentire measurement. While

120y this approach performs optimally in steady state, it ap-
opr(t) = Ik apr(t). (25  proaches the steady state in a nonoptimal manner compared
to the dynamic controller. Figure 4 demonstrates this poor

This is the same result one gets when the estimation procdransient performance for tracking fluctuating fields of differ-
dure is simply to perform a least-squares line fit to the noisying bandwidth. Notice that the performance only begins to
measurement curve for constant fielfote that all of these improve around the time that the dynamic controller satu-
results are equivalent to the solutions of Hé&f7], but with-  rates.

out J damping) If it were physically possible to ensurg, Also notice that the transfer functid®,(s) is dependent
=0, then our estimation would improve by a factor of 4 to on whether or not the state is being controlled, i.e., whether

the upper right result. However, quantum mechanics imposesr not\ is zero. The performance shown in Fig. 4 is for one

that this initial variance is nonzer@.g.,0,0=J/2 for a co-  particular value ok, but others will give different estimation
herent state and less, but still nonzero, for a squeezed,stat@erformances for short times. Still, all of the transfer func-
and the upper right solution is unattainable. tions generated from any value dfwill limit to the same

TABLE Il. Spin tracking error,o,&t), for different initial variances ob andz

00=0 Oho Opo—
0'20:0 0 3()/2‘]20-b00-Mt2(30-M + ’szZU'botS)_l SO'Mt_l
o) omop(om+ogt) 4oy (Y FPopoo ot + 3oy (00 + I 2010 4oy (3o +ot) (H(doy +ogt))
120%' + ’yZJZO'b()O'ZotA"" 40’M (30’20t + ’szztSO'bo)
O0— @ oyt™t Ao (3o + YPIB0p0) (120t + 2Pt % op0) 2 4oytt
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0 R ' ' tracked. Becausgis basically an effective gain, variations in
§ J will affect the performance, but not critically, so the error
Constant Gain signal will still be approximately zero. If the applied signal is
Gpg(t) set to be the estimate, then the tracking error must also be
approximately zeraSee Appendix C for a robustness analy-
/ sis along these lines in frequency space.

Of course, this analysis assumes that we can apply fields
with the same precision that we measure them. While the
Vo= 10° precision with which we can apply a field is experimentally

S IGUENEUBTRUBUBEE Ny limited, we here consider the ideal case of infinite precision.
Yo = 10* In this admittedly idealized problem, our estimation is lim-
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr ited by only the measurement noise and our knowledge of
\ ; First, to motivate this problem, we describe how poorly
................................................................... our estimator performs given ignorance abdwutithout con-
. = = trol.

10

o
T

-—
OI

Dynamic Gain
opr(t) —

—_
© '
N

w

—
o '

~
T

Average Field Estimation Error
S,

Time A. Uncontrolled ignorance
FIG. 4. Estimation performance for estimators based on the dy- Let us consider the performance of our estimation proce-
namic gain solution of the Riccati equation, compared against estidure at estimating constant fields whahJ. In general,
mators with constant estimation gain. The latter are the transfefhjs involves solving the complicated total covariance matrix
function limits of the former; hence they have the same Iong-terrrEq_ (20). However, in the long-time limitt>1/JM) of es-
performance. Three different bandwiditprocesses are considered. timating constant fields, the procedure amounts to simply
fitting a line to the noisy measurement with a least-squares
performance at long times. Also, all of them will perform estimate. Suppose we record an open-loop measurement
poorly compared to the dynamic approach during the tranwhich appears as a noisy sloped line for small angles of
sient time. rotation due to the Larmor precession. Regardless of whether
or not we knowd, we can measure the slope of that line and
estimate it to bem. If we knew J, we would know how to

V. ROBUST PERFORMANCE: J UNKNOWN extract the field from the slope correctip=m/yJ. If we

Until this point, we have assumed the observer has com@SSumed the wrong spin numbétf,# J, we would get the

plete knowledge of the system parameters, in particular, theonoptimal estimateb’=m/ yJ'=bJ/J'.

spin numberd. We will now relax this assumption and con-  First assume that this is systematicerror andJ is un-
sider the possibility that, for each measurement, the colledknown, but the same, on every trial. We assume that the
tive spinJ is drawn randomly from a particular distribution. constant field is drawn randomly from thg,, distribution
Although we will be ignorant of a gived, we may still  for every trial. In this case, if we are wrong, then we are
possess knowledge about the distribution from which it isalways wrong by the same factor. It can be shown that the
derived. For example, we may be certain thanhever as- €rror always saturates

sumes a value below a minimal valdg;, or above a maxi-
mal valueld,,,,. This is a realistic experimental situation, as it
is unusual to have particularly long tails on, for example,where f=J/J’. Of course, because this error is systematic,
trapped atom number distributions. We do not explicitly con-the variance of the estimate does not saturate, only the error.
sider the problem of fluctuating during an individual mea- This problem is analogous to ignorance of the constant elec-
surement, although the subsequent analysis can clearly lnic gains in the measurement and can also be calibrated
extended to this problem. away.

Given aJ distribution, one might imagine completely re-  However, a significant problem arises when, on every
optimizing the estimator-controller with the full distribution trial, a constanto is drawn at random and is drawn at
information in mind. Our initial approach is more basic andrandom from a distribution, so the error is no longer system-
in line with robust control theory: we design our filter as atic. In this case, we would not know whether to attribute the
before, assuming a particuldf, then analyze how well this size of the measured slope to the size) of to the size ob.
filter performs on an ensemble with# J'. With this infor-  Given the sameb every trial, all possible measurement
mation in mind, we can decide if estimator-controllers builtcurves fan out over some angle due to the variatiod.in
with J’ are robust, with and without control, given the After measuring the slope of an individual line to beyond
bounds onJ. We will find that, under certain conditions, this fan-out precision, it makes no sense to continue measur-
using control makes our estimates robust to uncertaintyng.
about the total spin number. We should also point out procedures for estimating fields

The essential reason for this robustness is that when ia open-loop configuration, butithout the small-angle ap-
control field is applied to zero the measured signal, that conproximation. For constant large fields, we could observe
trol field must be approximately equal to the field to bemany cycles before the spin damped significantly. By fitting

Opg — (1 - f)Z(TbO,
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the amplitude and frequency independently, or computing the
Fourier transform, we could estimate the field somewhat in- 0
dependently ofJ, which only determines the amplitude.
However, the point here is thatmight not be large enough
to give many cycles before the damping time or any otherg
desired stopping time. In this case, we could not indepen-g 10 | [
dently fit the amplitude and frequency because they appea-% ...........
as a product in the initial slope. Similar considerations applyw
for the case of fluctuating and fluctuating). See Ref[23],
for a complete analysis of Bayesian spectrum analysis wit
free induction decay examples. \
Fortunately, using precise control can make the estimatior® . 3l e e
process relatively robust to such spin number fluctuations. < ' -

Sps(J,I)/ o,s(J)] -

/Gbs(J)/Gbs(J')

Error

rage?ield

B. Controlled ignorance: Steady-state performance T 8
10 10

We first analyze how the estimator designed wittper- Time
forms on a plant withd at tracking fluctuating fields with and

without control. To determine this we calculate the steady FIG. 5. Steady-state estimation performance for estimator de-
state of Eq(19) signed with J'=10°, and actual spin numbers:J=J’

%x[0.5,0.751,1.252,10,10Q. Other parametersy=1°, M=10%,
=10, oprree=1 (fluctuating field, A=0.1 (this is large enough to
satisfy largex limits discussed in text The inset compares the
normalized robust estimation performan@rve) at a particular
time, to the ideal performanaéne) whenJ is known.

For the case of no contrgh =0), we simplify the result-
ing expression by taking the same lajeapproximation as
before. This gives the steady-state uncontrolled error

(2
ope— (1 - f)22_bF =(1- f)zo'bFreev
Yo

, f2+2\ 120y, [ f?+2
wheref=J/J'. Because the variance of the fluctuatings opr{d.J) — 42-1) 2323 \4f-1
operes the uncontrolled estimation performs worse than no

estimation at all iff >2.

On the other hand, when we use precise control the pe
formance improves dramatically. We again simplify the
steady-state solution with the largé and A assumptions
from before, giving

(1+1) [2 1+f)
OpgJ,J) — (7) W‘Tg/éﬁwz (7)%5(3 ),

)%T(J’),
(27)

VvhereobT(J,J’) is the transient controlled error when a plant
with J is controlled with aJ’ controller ando,(J’) is the
error whenJ=J'. See Fig. 6 for a demonstration of this per-
formance for realistic parameters. As-o the f-dependent

0
10
where opgJ,J") is the steady-state controlled error when a
plant with J is controlled with aJ’ controller ando,gJ') is 5 107l
the error whenJ=J'. One simple interpretation of this result g
is that if we set)’ to be the minimum of the distribution ‘é opr(J. 1) opr(J) 2 Spe(J,I")
(f>1) then we never do worse thapgJ’) and we neverdo = ;42| |
; : 2 . '
petter thqn twice as we(f — ). See Fig. 5 for a demonstra - 10 opr(N/ o)
tion of this performance. ko) \
L 10.3 | - |
S / R N
C. Controlled ignorance: Transient performance g Y__ = - . N
. . ) : Z 4| 10° 100 108 10 174
Now consider measuring constant fields with the wrong™ 107 f f=J/J'
assumed’. Again, when control is not used, the error satu- . .
rates at 10"° 10° 10°
Time

ope— (1= )?0p.

. . o FIG. 6. Transient estimation performance for controller de-
When control is used, the transient performance again iMsigned with J’=1Cf, and actual spin numbers:J=J’
proves under certain conditions. The long-time transient sox[0.75,1,1.252,10,1001000. Other parametersy=10°, M
lution of Eq. (19) is difficult to manage analytically, yet the =10% y,=0, o,re.=0 (constant fielg) A=1. Note that this behavior
behavior under certain limits is again simple. For laxgend s valid for t<1/M=10"% The inset compares the normalized ro-
J" and forf>1/2, we numerically find the transient perfor- bust estimation performanceurve at a particular time, to the ideal
mance to be approximately performancegline) whenJ is known.
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prefactor saturates at a value of 1/4. Howeverfasl/2 '
then the system takes longer to reach such a simple '
asymptotic form, and the solution of E(R7) becomes in- h() ! J)

valid.

Accordingly, one robust strategy would be the following.
Suppose that the lower bound of thkedistribution was
known and equal td,,. Also assume that,r(Jmin) repre-  pTTTTTmmsmsssssssssses
sents an acceptable level of performance. In this case, we
could simply design our estimator based B J,,, and we
would be guaranteed at least the performanggJ,,) and h()
at best the performancg,(Jy,n) /4.

This approach would be suitable for experimental situa- ~ @nt
tions because typical distributions are narrow: the differ- [mmmmmemmmmmmemm-—e-e ]
ence betweed,,, andJa is rarely greater than an order of : :
magnitude. Thus, the overall sacrifice in performance be- i ;
tween the ideal case and the robust case would be small. The (Y ~-—1 29 — V(1)

estimation performance still suffers because of our ignorance
of J, but not nearly as much as in the uncontrolled case. ' Plant

VI. CONCLUSION _ FIG. 7. Equ@val_ent models fo_r the filtering proble(lsee o_Iiscus-
sion at the beginning of Appendix)AEach version can be inserted
The analysis of this paper contained several key stepmito the plant block of Fig. c). The filters all presume complete
which should be emphasized. Our first goal was to outlineknowledge ofh(t)=b(t) +u(t).
the proper approach to quantum parameter estimation. The
second was to demonstrate that reduced representations of APPENDIX A: SIMPLIFIED REPRESENTATION
the full filtering problem are relevant and convenient be- OF THE PLAN
cause, if a simple representation can be found, then existing In Sec. Il we outlined a general approach to quantum
classical estimation and control methods can be readily agearameter estimation based on the stochastic master equation
plied. The characteristic that led to this simple description(SME), but subsequently we derived optimal observer and
was the approximately Gaussian nature of the problem. Nexgontroller gains from an explicit representation of the plant
we attempted to present basic classical filtering and contralynamics[Eq. (6)]. This representation appears classical in
methodology in a self-contained, pedagogical format. Thdhat the plant state is given by a scalar variabtather than
results emphasized the inherent tradeoffs in simultaneous eg-density operator. In this section we present a derivation of
timation of distinct, but dynamically coupled, system param-this simplified representation and discuss the equivalence of
eters. Because these methods are potentially critical in angur approach to the original quantum estimation problem.
field involving optimal estimation, we consider the full ex-  From the perspective of quantum filtering theory we will
position of this elementary example to be a useful resourcgimply show that a Gaussian approximation to the relevant
for future analogous work. SME can be viewed as a Kalman filter, which in turn induces
We have also demonstrated the general principle that pred simplified representation of the dynamics of the spin state.
cision feedback control can make estimation robust to thén this simplified representation the quantum state of the spin
uncertainty of system parameters. Despite the need to asystem is replaced by a scalar variabknd(J,)(t) is viewed
sume that the controller produced a precise cancellation fiel@s the optimal estimate of the random procafs Equations
this approach deserves further investigation because of ifer dz(t) and its relation to the observed photocurrgdt
inherent ability to precisely track broadband field signdls  are given in Eqs(A3) and(A6), which have the convenient
It is anticipated that these techniques will become more petproperty of being formally time invariant. The technical ap-
vasive in the experimental community as quantum systemgroach in the main body of the text is then to replace Eq.
are refined to levels approaching their fundamental limits of A1), which is derived from the SME, by a state-space ob-
performance. server derived directly from the simplified model of Eq.
(A3). By doing so we achieve transparent correspondence
ACKNOWLEDGMENTS with classical estimation and control theory. We should note
that the diagrams in Fig. 7 indicate signal flows and depen-
This work was supported by the NSF Grant N@BHY-  dencies in a way that is quite at odds with the quantum
9987541, EIA-0086038the ONR Grant No(N0O0014-00-1- filtering perspective. This figure is meant solely to motivate
0479, and the Caltech MURI Center for Quantum Networksthe simplified model[Eq. (A3)] for readers who prefer a
Grant No. (DAAD19-00-1-0374. J.K.S. acknowledges fi- more traditional quantum optics perspective, in which the Ito
nancial support from the Hertz Foundation. The authorsncrement in the SME corresponds to optical shot-ngase
thank Ramon van Handel for useful discussions. Additionabpposed to an innovation process derived from the photocur-
information is available at http://minty.caltech.edu/ rent) and the SME itself plays the role of a “physical” evo-
Ensemble. lution equation mapping(t) to y(t)dt.
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Adopting the latter perspective, let us briefly discasgh  then, by using the evolution equation for tkecomponent,
reference to the top diagram in Fig.the overall structure of we can showJ)(t) =J exd-Mt/2]=J for timest<1/M.
our estimation problem. The physical system that exists irMaking the Gaussian approximation at small times, the third-
the laboratory(the spins and optical probe bepmcts as a order terms(AJ§> and —iy{[AJg,JyD(t)h(t) can be neglected.
transducer, whose key role in the magnetometry scheme is tphe Holstein-Primakoff transformatid@5], commonly used
imprint a statistical signature of the magnetic fiéld) onto  in the condensed matter physics literature, makes it possible
the observable photocurrent)dt. Hence whatever theoret- to derive this Gaussian approximation as an expansion in
ical model we adopt for describing the spin and probe dy-1/J. Both of the removed terms can be shown to~hE/JvJ
namics must provide an accurate description of the mappingmaller than the retained nonlinear term. Additionally, the
from h(t) to y(t)dt, as represented by the plant in Figcl  second removed term will be reducedhift) =0 by active
An open-loop estimator, designed on the basis of this plantontrol.
model, would construct a conditional probability distribution  These approximations give
for h(t) based on passive observationygf)dt. In a closed-

. . 2
loop estimation procedure we would allow the controller to _ (A1) —
apply compensation fields to the system in order to gain &Jp) (1) = yIh(t)dt+ \O'—M dW), (A1)
accuracy and/or robustness. In either case, the essential role
of the spin-probgplant model in the design process is to (ATY(Y)
provide an accurate description of the influence of an arbi- d(AJ2) (1) = - —2—dt, (A2)
trary time-dependent fielth(t) on the photocurreny(t)dt. oM

Note that the consideration of arbitratyt) subsumes all which constitute a Gaussian, small-time approximation to the

possible effects of real-time feedback. . full SME that represents the essential dynamics for magne-
Thomsen and co-workerd 9] have derived an accurate tometry. Note that we can analytically solve

plant model for our magnetometry problem, in the form of an
SME [Eq. (2)]. Following a common convention in quantum 5 <AJ§>(0)UM
optics, let us here write this SME and the corresponding <AJZ>(t):m,
photocurrent equation in the form _ Im z
dp(t) = —idt[H(h), p(t)] + D[YMJ,]p(t)dt where(AJ?)(0)=J/2 for an initial coherent spin state.
o — At this point we may note that Eq§Al) and (A2) have
*VHINMI,Jp(t)dWY), the algebraic form of a Kalman filtefThis is not at all
_ [ptvy surprising since the SME, as written in E@), represents an
y(hydt= (I (Odt+ Vo dW), optimal nonlinear filter for the reduced spin stf69] and
where H(h)=yhJ, and p(t) is the state of the spin system our subsequent approximations have enforced both linearity

conditioned on the measurement recgttydt. The quantity ~and sufficiency of second-order momehtgiewed as such,

dV_\/(t) is a Wiener increment that heuristically represents sho%he. quantity(J,)(t) would rgpreser_n an optimgeast squane
estimate of some underlying varial#é) based on observa-

ise in the phot tecti th t
noise in the photodetection procgal], and these are to be tion of a signald&(t), and(AJﬁ)(t) would represent the un-

interpreted as Ito stochastic differential equationfi(if and - ] ) :
y(t)dt are considered as input and output signals, respeCc_erta|nty(v_arlamce of this e;nmgte. It thus stands to reason
tively, this pair of equations jointly implement a plant trans- that we m|gh.t be able to .S'mpl'f}f our magn:etometry model
fer function as depicted in Fig. 7, wih(t) taking on the role even further if we could find an “underlying” model for the
of the plant state ’ evolution ofz(t) and d&(t), for which our equations derived

: from the SME would be the Kalman filter.

For a large spin ensemble, howevgft) will have very . iy . .
high dimension and it would be impractical to utilize the full suflftiézsmt difficult to do so, and indeed a very simple model

SME for design purposes. It is straightforward to derive a
reduced model by employing a moment expansion for the dz(t) = yIh(t)dt,
observable of interest. Extracting the conditional expectation

values of the first two moments & from SME gives the

—
following scalar stochastic differential equations: dé(t) = z(t)dt + Vo dW), (A3)
2
() (1) = I Oh(b)dt + <A‘]L>(t)d\W(t), where dW{) is an Wiener increment that is distinct from
VO (though related tbdWt). In order to match initial conditions
(A1) with the equations derived from the SME, we should assume
ALY (1) = - ———dt-i®[AT, I, D(Dh(t)dt that the expected value aft=0) is zero and that the vari-
Im ance of our prior distribution for(0) is J/2. Written in ca-
(AJ?)(t) — nonical form, the Kalman filter for this hypothetical system
M dW). is then
NOwm
i initi i t) [dé(t) —Z(t)dt
If the spins are initially fully polarized along and the (1) = Ih(t)dt + U’zi)[ & -2 ]'

spin angle~(J,)/{J,) is kept small(e.g., by active contrg| Vo Vo
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t
do,u(t) = — U;;R()dt.
M

HereZ(t) is the optimal estimate of(t) and o,t) is the
variance. We exactly recover the SME model, E@dl) and
(A2), by the identifications

PHYSICAL REVIEW A 69, 032109(2004)

of the transducing physical system corresponds to the sim-
plified model[Eg. (A3)], since we can do so without making
any error in our description of the effect bft) on the re-
corded signal. We thus conclude that for the purposes of
open- or closed-loop estimations loft), filters and control-
lers can in fact be designed—without loss of performance—
using the simplified mod€lEq. (A3)].

(1) < (I, It is interesting to note thai(t) can loosely be interpreted
as a “classical value” of the spin projectiah. Since the
o)1) — (AJA(1), (A4)  operatord, is a backaction evading observable, the continu-
ous measurement we consider is quantum nondemolition and
[d&t) —=Z(t)dt] . its backaction on the system state is minin@nditioning
——— = dWY). without disturbance Hence ifh(t)=0, we may think of the
ALY measurement process as gradually “collapsing” the quantum

state of the spin system from an initial coherent state towards
an eigenstate af,; the hidden variable(t) in the simplified

filter, and it is thus guarantegby least-squares optimality of mOdZI_ Eq.t(A?% Woll:.ld t?en _reprets?nt tbe ?ngen\t/al_uetﬁorre-
the filter [26]) to have Gaussian white-noise statistics. HencesPOnding to the ultimate eigenstate, &t =(J,)(t) in the
we have solid grounds for identifying it with the Ito incre- K&lman filter would be our converging estimate ofAgain,
ment appearing in the SME. t_hls is as expected from the abstract perspective of quantum
Given this insight, we see that our original magnetometry/iltering theory for open quantum systemgonditional spin
problem can equivalently be viewed in a way that corre-SdU€€zing in this case can then be gnderstood as nothing
sponds to the middle diagram of Fig. 7. In this version, wemore than the reduction of our uncertainty as to the underly-
posit the existence of a hidden transducer that imprints std?9 value ofz—as we acquire information aboztthrougzh
tistical information about the magnetic fiefdt) onto a sig- °oPservation ofd¢(t)=y(t)dt, our uncertaintyogt) < (AJ;)
nal dé(t). A Kalman filter receives this signal, and from it X(t) naturally decreases below its initial coherent-state value
computes an estimaf#t) as well as an innovation process ©f J/2. Still, the quantum-mechanical nature of the spin sys-
th) [Note that as indicated in the diagram, the Kalmantem is not without consequence, as it is known that continu-
. I, ) . ' ous QND measurement produces entanglement among the
filter will only function correctly if it “has knowledge of” the spinsQin the ensembld.2] P g g
true magnetic fieldh(t) in the way that a physical system y

v . , It seems worth commenting on the fact that E43)
would, but this is not an important point for what follows. cjeary predicts stationary statistics for the photocurrent
According to the model equations, the Kalman filter then

< the followi ianal 1o b ved b hotod y(t)dt, whereas Eq(A1) contains a time-dependent diffusion
emits the following signal to be received by our photodeteceficient that might color the statistics ft)dt=(J,)(t)dt

tor +\50—MdVV(t). In fact there is no discrepancy. It is possible
[24] to derive the second-order time-correlation function of
- the observed signgi(t)dt directly from the stochastic master
Note thatdW(t) now appears as an internal variable to theEqg. (2),
Kalman filter, computed from the input signdé(t) and the _
recursive estimat&(t), while the inherent randomness is re- YOy(t+ 7)) =[Ot + 7)) + (It + D I(1) /2
ferred back taWt). Although this may seem like an unnec-
essarily complicated story, it should be noted that the com-
pound model withz(t) and the Kalman filter predicts an . . )
identical transfer function fronh(t) to the experimentally (This result could also be obtained from the standard input-
observed signay(t)dt to that of the equations originally de- OUtput theory of quantum optigsSince the master equation
rived from the SME(top diagram in Fig. ¥. Hence, for the results in linear equations 'for the mean valgydgt)) and
purposes of analyzing and designing magnetometry schemédz(t)) the quantum regression theor¢@v] allows the cor-
these are equivalent models. relation functiong(J,(t)J,(t+ 7)) and(J(t+7)J,1)) to be cal-
Combining several definitions above we find culated explicitly. In this paper we are most interested in the
S~ early time evolution for which we obtain the expressions
] (YD) = (3(1) = ¥bJt+ O,

Nowm

It is important to note that the quantifidé(t)-Zdt]/ Vo,
represents the so-callédnovation proces®f this Kalman

YOt =F()dt + Vo dW1). (A5)

1
+——8(7).
4nM

(A6)

It thus follows that in the compound model, the Kalman filter
actually implements a trivial transfer function and can in fact
be eliminated from the diagram. Doing this, we obtain the
simplified representation in the bottom diagram of Fig. 7.These correlation functions correspond to a white-noise sig-
Here the perspective is to pretend that the internal dynamicsal which is a linear ramp with gradienbJ with a random

YOYD) - YOy = ﬁ&(t) +(AT(0) + O(P).
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offset of variance({AJ?)(0), in perfect agreement with our Feedback b(y) Atomic
simplified model Eq.(A3). If the statistics ofy(t) were Controller o, Ensemble
Gaussian these first and second-order moments would be *® < C 4 O P 0
enough to characterize the signal completely, and indeed for
sufficiently large J the problem does become effectively
Gaussian.

As a final comment we note that the essential step in the ) . .
above discussion is to observe that the equationspfor the FIG. 8. Spin control system with .p'af‘t transfer funct_@(s)
first-and second-order moments of the quantum state deriveg YJIS'.r(t) 1S the. reference signal, which 'S usually zezd) 1S the

. . error signalu(t) is the controller output(t) is the external field to
from the stochastic master equation correspond to a Kalman . = ) .
filter for some classical model of a noisy measurement. Th%’e trackedh(t) =b(t) +u(t) is the total field.b(t) is the field esti-

. . mate.

correspondence holds for the stochastic master equation cor-
responding to an arbitrary linear quantum mechanical sys-
tems with continuous measurement of observables that are APPENDIX C: ROBUST CONTROL IN FREQUENCY
linear combinations of the canonical variabl@g]. In the SPACE
general case of measurements that are not QND the equiva- Here we apply traditional frequency-space robust control
lent classical model will have noise-driven dynamical equaimethods{30,3] to the classical version of our system. This
tions as well as noise on the measured signal. The noisgnalysis is different from the treatment in the body of the
processes driving the dynamics and the measured signal m&@per in several respects. First, we assume nothing about the
also be correlated. The case of position measurement of Pise sourceébandwidth, strength, etcAlso, this approach

harmonic oscillator shows all of these featuf2s. is meant for steady-state situations, with the resulting
estimator-controller being a constant gain transfer function.

The performance criterion we present here is only loosely

APPENDIX B: RICCATI EQUATION SOLUTION METHOD related to the more complete estimation description above.

The matrix Riccati equation is ubiquitous in optimal con- Despite these differences, this analysis gives a very similar
trol. Here, following Ref.[29], we show how to reduce the design procedure for the steady-state situation.

nonlinear problem to a set of linear differential equations. We proceed as follows with the control system shown in

Consider the generic Riccati equation Fig. 8, where we labdi(t)=u(t) +b(t) as the total field. Con-
V(1) sider the usual spin system but ignore noise sources and as-
——==C-DV(t) - V(1)A - V() BV(t). sume we can measut) directly, so thatz(t)=y(t). For

dt small angles of rotation, the transfer function frdift) to

We propose the decomposition y(t) is an integrator

= -1 d t d t
V() =W(HU™(1) 3(;( ) _ 3( ) _ JIh(t),
with the linear dynamics t t
dw(t) sy(s) = yJh(s),
dt _[—D CMW(t)]
dut) | [ B AJlu® | y(s) =P(s)h(s),
dt
. . . . . P(s) = yJIs.
It is straightforward to then show that this linearized solution
is equivalent to the Riccati equation Now we define the performance criterion. First notice that
_ the transfer function from the field to be measubég to the
1
avo = dW—(Uu—l + W(t)du—(t) total field h(t) is S(s) where
dt dt dt
h(s) = S(s)b(s),
dw (t du(t
BLLIUIPER wm(— u-l(t)ﬁu-l(t))
dt dt
=[-DW(t) + CU(t)JUX(t) - W (U Xt)(BW(t) )= 1+P(s)C(s)’

_l — _ —- —
FAUMUT() =C-DV(H) - VA - VOBV (), [Also notice that this represents the transfer function from

where we have used the identity the reference to the error sigre(s) =S(s)r(s).] Because our
-1 field estimate will beb(t)=-u(t), we desireh(t) to be sig-

du™(t) L1, duU® - . ;
gt =-U (t)?u (t). nificantly suppressed. Thus we would ligs) to be small in

magnitude[controller gain|C(s)| large] in the frequency
Thus the proposed solution works and the problem can beange of interest. However, because the g&ifs)| must
solved with a linear set of differential equations. physically decrease to zero at high frequencies we must close
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the feedback loop with adequate phase margin to keep the Jinax
closed-loop system stable. This is what makes the design of wq=maxwcg| = oc 3y (C2
C(s) nontrivial.

Proceeding, we now define a functi@ (s) which repre-  Combining Egs.(C1) and (C2) we find our fundamental
sents the degree of suppression we desire at the frequentijdeoff
s=jw. So our controllerC(s) should satisfy the following

performance criterion: wWip= ijmm (C3
max
[Wi(s)S(9)]|.. < 1. which is the basic result of this section. Given experimental

constraints(such asJmin, Jmax and wg), it tells us what
performance to expedtl/W;, suppressionbelow a cho-
sen frequencyw;.

From Eqg.(C3), we recognize that the controller gain at
the closing frequency needs to be

Thus the largekV;(s) becomes, the more precision we desire
at the frequencys. We choose the following performance
function:

Wi

Wi(s) = ,
l( ) 1+S/(1)1 _ wc _ wlwlo_ (1)9
| |C"ﬁ" Yuin  Ymax
such thatw, is the frequency below which we desire suppres- min max

sion 1 Wi In the final analysis, we do not need to u3eand wc to
Because our knowledge af is imperfect, we need to parametrize the controller, only the tradeoff and the gain.
consider all plant transfer functions in the range Also, notice that now we can express fmigg]=w; Wi,
To check our previous assur\r;ption
P= g{\]min - ‘]max}- g < wcy
. i . J
Our goal is now to find aC(s) that can satisfy the perfor- = Wyg—,
mance condition for any plant in this family. We choose our Jrmin
nominal controller as which is true ifW;>1.
Finally, the system will never close below the frequency
_ @c minfwcr] SO we should increase the gain below a frequency
Co(8) = —. ; . . )
¥J wy which we might as well set equal to nhincg]. This

] , ] improves the performance above and beyond the criterion
So if J=J' then the system closes atc (i.e. apove. Of course we will be forced to level off the gain at
|P(iwc)Coliwc)|=1, whereas in general the system will close some even lower frequenay, because infinite dc gaita

at wcp=wc(J/J’). We choose this controller because rea| integratoyis unreasonable. So the final controller can be
P(s)C(s) should be an integratofx1/s) near the closing expressed as

frequency for optimal phase margin and closed-loop stabil-

ity. c9)=[c| 1 oy(l+dwy)
Next we insert this solution into the performance condi- ] +S g o (1+dw)

tion. We make the simplifying assumption; < wc(J/J")

(we will check this later to be self-consistgnthen the op-

timum of the function is obvious and the condition of Eqg.

(C1) becomes

with the frequencies obeying the order
(1)|_<
J oy = Minfwcg] = @1 Wio<
a)1W10 < WCR= wc? .
J
wcr= 7 0 Wyo<

We want this condition to be satisfied for all possible spin JImin
numbers, so we must have

‘Jmax

wg = ma){wCR] = (,L)]_Wlo.

01 Wyo= minfwcg] = wc%- (CY) Jmin
Notice that the controller now looks like the steady-state
Experimentally, we are forced to rolloff the controller at transfer function in Fig. 3 derived from the steady state of
some high frequency that we shall caly. Electronics can the full dynamic filter.(The notation is the same to make this
only be so fast. Of course, we never want to close above thisorrespondence cléaHere wg was simply stated, whereas
frequency because the phase margin would become tabere it was a function ok that went to infinity as\ — cc.
small, so this determines the maximuhthat the controller Here the high gain due t@, and wy was added manually,

can reliably handle whereas before it came from the design procedure directly.
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Cooled, low-loss nanomechanical resonators offer the prospect of directly observing the quantum dynamics
of mesoscopic systems. However, the present state of the art requires cooling down to the millikelvin regime
in order to observe quantum effects. Here we present an active feedback strategy based on continuous obser-
vation of the resonator position for the purpose of obtaining these low temperatures. In addition, we apply this
to an experimentally realizable configuration, where the position monitoring is carried out by a single-electron
transistor. Our estimates indicate that with current technology this technique is likely to bring the required low
temperatures within reach.

DOI: 10.1103/PhysRevB.68.235328 PACS nunier85.85:+j, 85.35.Gv, 03.65.Ta, 45.80r

[. INTRODUCTION teristic frequency of a SET is typically of the order of
10 GHz, so that the rf drive looks constant to the SET, and

Nanomechanical resonators are now being built withthe dc-SET equations can be used.
quality factors in the rang&)~10*, and resonance frequen- ~ We will use a quantum mechanical model of the measure-
cies of up to several hundred MHZhe ground state energy ment and feedback process, but discuss how, in this case,
of these devices can correspond to temperatures in the miguch a description is equivalent to a classical measurement of
likelvin range. As a result, the observation of quantum be-2 noisy classical system. Thus, this paper is intended for both
havior in these devices is becoming a real possibilifp  experimentalists familiar with classical descriptions of noise
detect such behavior, the resonator must be sufficiently coldn systems as well as quantum measurement theorists.
since a quantum harmonic oscillator driven by thermal noise Rather than performing a microscopic analysis of the
behaves as a classical oscillator driven by thermal noise, orf@€asurement process in terms of the interaction of the SET
must ensure that the signatures of quantum effects are ngnd the resonator, we start by introducing equations which
swamped by the thermal behavior. The approach taken so f&€escribe the continuous observation of a quantum observ-
to achieve low temperatures is to place the resonator in able, and show how this includes the shot noise and back-
refrigerator. However, cooling very small devices in this wayaction, these being the key sources of noise in a continuous
is inherently inefficient in that the system becomes weaklyjuantum measurement. This description can then be tailored
coupled to the thermal bath. Here we explore the possibilityo the case of a measurement with a SET by choosing the
of using feedback control to effect an “active” cooling of the parameters so that the noise sources match those calculated
resonator, in order to cool below the possible limits set byin microscopic noise analyses which have been performed
the “passive” refrigeration technique. for the SET>®

To perform such feedback cooling the resonator must be A treatment of the continuous quantum measurement of a
monitored, and the result fed back in real time to affect thewo-state system using a SET has been carried out by
dynamics. A practical method of performing a continuousKorotkov;’ using what might be referred to as a partially
measurement of the position of the resonator is to use a

single-electron transistaiSET).3~° To measure the position Eiianle

of the resonator one locates the central island of the SET electrode |

next to the resonator. When the resonator is charged, and th

SET is biased so that current flows through it, changes in the = Faadback
resonator’s position alter the potential on the central island, S — REscndiDg circuitry
which in turn changes the current. The current therefore pro{y,,, T — i

vides a continuous measurement of the position of the reso | i

nator, and this is just what is required for implementing a Lot N It |

linear feedback cooling algorithfi. A feedback force can be
applied by applying a voltage to a gate capacitively coupled @
to the resonator, and adjusting the voltage so as to damp th
resonator(see Fig. 1, or by passing a variable current

through the oscillator in the presence of a fixed external =
magnetic field. We will analyze the first system, although the FiG. 1. A schematic of the resonator, measuring, and feedback
results should apply to the second as well. In our analysis Wepparatus. As the resonator moves closer to the SET, the current
will use the theory of the dc-SET. While an experimentflowing through the SET changes, and that information is then used
would most likely use a radio-frequency SE® the charac-  to generate a feedback voltage applied to an actuating gate.

Ids
1

| Source \ Island / Drain | *
1 1
5 Tunnel junctions !
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microscopic approach. The equations we use here may hencertainty is not fed back into the observable being mea-
derived by replacing the two-state observable in those equaured, then the measurement is referred to as “back-action
tions by the resonator positidfA full analysis, along the evading.”

lines of those performed for quantum optical systém, Now let us examine the case of a position measurement
can also be expected to produce the same equations undam a harmonic oscillator. To do this, we set=x, and the
reasonable approximations. The form of these equations idamiltonian becomes

determined by how information is obtained, and not by the

specific implementation, which explains why the form of the p? 1 -

equations is similar in optical position measurements and H= 25 T 3 Mwox”, (€)
position measurement using SETs. If the measurement is of a

physical observable, and the resulting error about the expeggherem is the mass of the particley, is the (angulaj fre-
tation value of that observable in a short time intem¥alis  guency of the oscillation, and and p are the position and
Gaussian, then the most straightforward implementation ofnomentum operators, respectively. To make our model suf-
that measurement process has the form used here. ficiently realistic, we need to include two more sources of
_ In Sec. Il we introduce the equations that describe a conngjse: the first is the intrinsic thermal noise of the harmonic
tinuous measurement process, derive the form of the resuliscillator, and the second is the possibility that the oscillator
ing noise, and give the equivalent classical model. We thepyay pe driven by white noise over and above that required
discuss how this model can be applied to position measureyy Heisenberg’s uncertainty principléexcess “technical
ment using a SET, and compare our formulas to those deqgjse”).

rived using a semiclassical treatment of the SR&fs. 3 and The second of these is easily included by adding a term
8) in order to express our results in terms of experimental_ g[x [x 5]] to the equation of motion gf; this describes a
parameters. In Sec. Ill we discuss the implementation of @gjse term identical to the one caused by the back-action, but
feedback algorithm and calculate the minimum achievablgjithout the corresponding dynamics ef associated with
temperature in terms of physical parameters. We then calCysptaining a measurement result which causes the back-

late estimates of realistic achievable temperatures for an agction. It is equivalent to adding a term lineanito Hamil-
experimentally realizable sample system in Sec. IV, and fitgpjan (3) multiplied by white noise.

nally conclude with a summary of the results obtained. The inclusion of thermal fluctuations is only a little more
involved, and can be achieved by coupling the oscillator to a
ll. CONTINUOUS QUANTUM MEASUREMENT thermal bath. In our case the effect of the thermal bath may
OF POSITION be included by adding the “standard Brownian motion mas-

ter equation”(SBMME) (Ref. 15 to our equation of motion
Given a quantum system whose state is specified by thfyr p:
density matrixp, and whose evolution is determined by the
HamiltonianH, then a continuous measurement of the ob- i iT
servableO of that system, which provides the continuous dp=-— g[H,p]dt— ﬁ[X,{p,ph]dt
output resultgmeasurement record

k mwor ﬁwo d
1 —| k+B+ 700”\2'(? [x,[x,p]]dt
dr=(0)dt+ —dW, (1)
V8k +2K(xp+ px—2(x)p)dW, 4)
induces the following evolution of the systéim®* wherel’ = w/Q, Q being the quality factor of the resonator.
The two terms proportional tb are due to the inclusion of

dp=—(i/%)[H,p]dt—k[O,[O,p]]dt the SBMME, the first representing dissipation due to the res-

ervoir while the second is a diffusion term due to environ-
+ \/ﬂ(OerpO—z(O)p)dW. (2 mental fluctuations. Here we are using an approximate form

of the SBMME appropriate for the weak coupling regime
Herek is proportional to the measurement strength, dWd  (smallT", largeQ) but covering all ranges of temperatur8s.
is a Weiner process. The noise contained in the measureme®ince the nanomechanical resonators we consider all have
record is a necessary result of the fact that only a finitdarge values ofQ, the weak coupling requirement is easily
amount of information is obtained regarding the observableatisfied. The temperature dependence of the diffusion coef-
O in afinite time. This direct noise on the record is called theficient is given by coth{wy/2kgT) so that the diffusion does
shot noiseHowever, this is not the only noise resulting from not vanish akgT—0: this correctly accounts for the exis-
the measurement process. As a result of Heisenberg’s uncegence of quantum vacuum fluctuations which exist even at
tainty relation, information about one observable makesero temperature. In the absence of a rigorous characteriza-
other observables less certain. Due to the dynamics, the ution of the dissipation channels of nanomechanical systems
certainty (noise in these observables can feed into the ob-there is as yet no need to include a more sophisticated de-
servable being measured. This source of noise is referred gcription of SBMME environmental effect§.Phenomeno-
asback-action If the Hamiltonian is such that the increased logical corrections to the SBMME such as the temperature
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dependence ofF can be added if needed, but these are not i ir
significant effects in the higk® regime. dp=— 2 [H,pldt=—[x,{p,p}]dt
We also need to include in our model the possibility that
there is noise driving the oscillator which is correlated with Mool hwg
the noise on the measurement rec@ite shot noise This —| k+ B+ —;—cothy, — | [x,[x,p]]dt
can happen if the noisy behavior of the oscillator explicitly B
causes some of the noise in the measurement apparatus, or —iV2kB[X,pldW+ \/ﬂ(Xerpx—Z(x)p)dW.

vice versa. In this situation, the measurement record contains
more information about the oscillator position, so when it (10
comes to adding feedback, we are able to cool the oscillatofhis completes our quantum mechanical description of a
further than would otherwise be expected. In E8). the resonator under continuous observation.
noise driving the oscillator is purely the quantum back- Now that we have an equation that includes all the rel-
action. It may appear from Eqél) and(2) that the quantum evant noise terms, the noise spectrum of the measurement
back-action is correlated with the shot noise due to the factecord can be obtained:
that the same noise ternd{V) appears in both equations.
However, this is not the case. The term proportionad Y&/ Sw)= i Mool hwo
. ; ) ! w)= = +|k+ B+ cot
which appears in the equation fpr describes the random 8k 2h kgT
way in which the measurement changes the observers state
of knowledge about the system. Thus, on average, this noise 2(flm)?
term decreasesthe entropy ofp. The back-action noise, I20?+ (0?2~ wd)?’
which is driving the oscillator and consequenifcreasing . _ _ o _
the entropy ofp, is described by the term proportional ko The f|ret term is the shot noise, which is white, the term
The quantum back-action is, in fact, completely uncorrelatedProportional tok is the quantum back-action, the term pro-
with the shot noise. portional toI" is the effect of the noise from the resonator’s
To drive the oscillator with a random force, one appliesthermal environment, and the term proportionalgayives
the Hamiltonian/ £(t)x, where&(t) is the magnitude of the any excess noise over and above the necessary quantum
random force. We can choogét) to be correlated with the back-action. Note that the last three terms all have the same
shot noise, with the correlation coefficiext by setting form as a function ofw. This is because they are all white
noises filtered through the harmonic oscillator spectral re-
sponse function.
d¢= V2a(ikdW+ 1= «dV), ) While our treatment so far has been fully quantum me-
chanical, it is worth noting that a purely classical model of a
wheredV is a Wiener noise uncorrelated withV. The re-  measured, damped oscillator will completely reproduce the
sulting spectral density of(t) is @, so that(£(t)é(t'))  dynamics of this measured quantum system, no matter how
=ad(t—t"). The Stratonovich equation which describes thecold the resonator, so long as the initial density matrix is

(11)

driving by &(t) is Gaussian inx andp.® Thus, one can understand the behavior
of the oscillator in terms of classical noise and a classical
Py = —i £OX| Y, 6 measurement process. The eguatlons of motion for the posi-
) §0X1 ) C tion X, and momentunp,, of this equivalent classical oscil-
. . . . lator are
and converting this to an Ito equation gives
1
dl ) = —iV2ax| ) dé— ax? g)dt. @ dxe= 1 Pedt, (12
Converting the Ito equation further to an equation goone dp.= —mngcdt—l“pcdtJrﬁ\/ﬂdY@Lh\/Z,BdVC
obtains
+ \/ fagl thzﬁﬂdu (13
m wqo CO cs
dp=—afx,[x,p]]dt—i\2a[x,p]dE. ® keT

where dY,, dV., and dU, are each zero-mean Gaussian
Since the observer has accessW, but not todV, she must  white noise, and mutually uncorrelated. The position of the
average ovedV, and this gives oscillator is then observed by a continuous classical mea-
surement, which generates the output record

dp=—a[x,[X,p]ldt—iy2ka[x,p]dW. 9 1
- - - drCZXCdt"F \/ﬁdzc, (14)

If we allow part of the excess noise given Byin our model

to be due to driving by the shot nois@V (that is, this noise and wheredZ; is zero-mean Gaussian white noise, uncorre-
is correlated with the shot noigsBV with correlation coeffi-  lated withdY,. The noise terndl Y, is what is required in the
cient k) then the equation of motion for the system becomeslassical model to correctly include the back-action of the
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guantum measurement process. It is now explicit that thisising a perturbative quantum calculatioihis ignores the
noise is uncorrelated with the shot noise on the measurgeossibility that electrons will tunnel coherently across both
ment,dZ.. junctions simultaneously, a quantum effect referred toas

In the classical case, the observer’s state of knowledg&unneling This method may be referred to as a “semiclassi-
about the oscillator is given by a joint probability density cal” model for the dynamics of the SET, and it is the model
over X, and p.. This probability density is the classical that we will use here.
equivalent of the density matrix. So long as the initial It is important to note that the above semiclassical method
probability density is Gaussian, it remains Gaussian as timéor calculating the charge fluctuations, does not include the
passes, and as a result the observer’s full state of knowledggiantum back-action noise. This can be seen from the fol-
may be represented by merely five variables: the mean posiewing argument? In the classical treatment, since the fluc-
tion and momentum{x.) and(p.), and the variances and tuating force on the resonator is due to the electrons jumping

covariance, given by on and off the island, in principle the time history of this
force can be known by detecting the electrons flowing in the
Tz =(Xe) = (Xo)%, (15  circuit. In principle, then, the effect of the noise can be
, , known, and if desired, undone. As a result it cannot include
ap=<pc)—<pc>2, (16)  the quantum back-action, since this cannot, even in principle,
be undone. Thus, the charge fluctuations calculated using the
af(p:(xcpc)—(xc)(pC}. (17 semiclassical SET model gives the excess ngisand the

current shot noise givds

The quantum mechanical measurement mojdeds. (1)
and (2)], describe a valid quantum measurement for any
value ofk and 8, However, the classical model of the SET
il only give an accurate description of the dynamics of the

It is the meangx.) and(p.) (being the observer’s best esti-
mates of the value ok. and p;)which are the classical
equivalents of the quantum expectation val(xes and (p).

It turns out that if one writes the classical measuremen

record as SET, and thus of the true values lofand 3, in certain pa-
1 rameter regimes. In fact, it is useful to note that the rkiij®
dre=(xgdt+ —dW,, (18)  provides a diagnostic tool for determining when the classical
V8k calculation breaks down; i/8<1 is not satisfied, then the

classical calculation no longer provides a good estimate of

thendW, is zero-mean Gaussian white noisencorrelated X _
with dZ,. The classical model is then equivalent to the quan-the total force noise on the resonator. Thus it should be noted

tum model if we equatel\W, with the quantum measurement that if k/ 8= 1, then the classical calculation cannot be relied
noise. dW. and correlecxte dV, with dW,, so that uPon. That is, it is possible in this case that the total noise on

(VD)W (') = kS(t—t"). 'éhe resonator is signifi_can_tly larger than our estimafe,e_,
ue to quantum contributions not taken into account in the

classical calculation.

We find that in the regions of best cooling, which we
explore in the followingk is not necessarily much smaller

Having obtained a model which is sufficiently general tothan 8 (although near-optimal cooling can be obtained with
encompass the dynamics of a resonator monitored by a SEf=</, and in particular we will give as an example results
we need to express the theoretical parameteys, andx in for k= B/10). Hence our calculations should be regarded as
terms of the actual experimental parameters of the SETstimates of the performance of the feedback algorithm,
Since it is by measuring current through the SET that weather than exact results. We note, however, that a more so-
measure the resonator position, it is the spectral density dfhisticated analysis using the diagrammatic techniques de-
this current which determines the shot noise of the measura€loped by Schoeller and Sahd might provide analytic, or
ment. The back-action from the measurement is due to theemianalytic results for the parameter regime of most interest
action of the SET on the resonator, which is the force that théor quantum measurement and control, and therefore may
resonator feels from the charge on the SET island. As a resurovide a method for more accurate calculations.
the back-action nois@ can be calculated from the spectral ~ The spectral densities given by the classical calculation
density of the charge fluctuations on the SET island, andre derived in the Appendix. Approximations which are used

hencex is determined by the correlation between the currenin the derivation are detailed there, and come primarily from
and the island charge fluctuations. Zhang and Blencow®The noise spectrum of the displace-

However, the dynamics of the SET are sufficiently com-ment of the resonator due to the shot noise of the SET cur-
plex that analytic results for these spectra have as yet onlient is
been obtained for certain parameter regimes. These calcula-
tions have been performed by Zhang and Blencbwsing | S/(w)
previous results of KorotkoV.The technique used is to ap- SX:(lex)z'
proximate the dynamics of the electron tunneling on and off ds
the SET island by a classical master equation. That is, thehereS,(w) is the spectral density of the shot noise, given in
electrons are assumed to tunnel independently across eachd. (A10), andl is the current through the SET, given in Eq.
the junctions, with certain rate@he rates being obtained (A8). The dependence of the current on the displacement of

IIl. CONTINUOUS MEASUREMENT
WITH A SINGLE-ELECTRON TRANSISTOR

(19
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the resonator comes from its dependence on the gate capatielled case. To derive these equations, we note that the equa-

tance, which can be approximated by tion of motion forp, under feedback, is given by E¢LO),
where one sets
X
Cyg~Cgqo| 1—+]. (20 2
d _p 2,2
H—ﬁJrEmwox —y(mw0<x)+(p>)x (25)

The shot noisés, (w) is, to a very good approximation, fre-
quency independent, as required by our quantum measures include the feedback force. Using the fact thHIO)

ment model. Thus =Tr[Odp], anddW?=dt, one obtains, for the means,
1 Si(w) (p)
| | 2
—= = 21 d(x)=—dt+2y2ko dW, (26)
o NN TINE o &0 %= "

The spectral density of the classical part of the displacement  d{p)=—mw?(x)dt—(p)dt— y(mw(x)+(p))dt
noise due to the fluctuating force on the resonator is

+ \2kphdW+2+2koZ dW, (27)
2
S(w)= Se(w)/m , (22) and, for the covariances,
0w+ (w?- oz)(z))2
where S(w) is the spectral density of the fluctuating force oi= Eﬂip—Sk(Uf)Z, (28)
given in Eq.(A13). Since, once agair§(w) is effectively
frequency independent, we have (',’2;: _2mw20->2(p—8k(0')2(p)2—21—‘0"2)+ 242k
SF Mgl x0)
= . 23 21— 0 0
B 21 (23 +2h% (1= x) B+ —7 cochk? , (29)
The correlation coefficients, between the shot noise and the o2 r
excess back-action is therefore simply the correla@obe- o= Fp —mw?o?— Eaip—Bkaﬁaip— 4k Bkho?.
tweenS, and S, which is given in Eq(Al1). (30
IV. FEEDBACK CONTROL In these equationsr> and US are the variances in position

. . ._and momentum, respectively, and
We wish to cool the dynamics of the resonator by using P 4

the information obtained continuously about the state of the 1
resonator to direct a time-dependent external force. Such a a§p=§<xp+ pX) —(xX){p) (32)
force may be applied, for example, by passing current

through the resonator and immersing it in a magnetic field. lfs he symmetrized covariance. This system of equations is
can also be applied by placing an actuating gate near thg, oy ‘equivalent to Eq(10) as long as the initial state is
resonator, and varying the potential difference between thes, ssian. In order to solve this set of equations most easily,
charged resonator and the actuating gate. we make what we call the truncated Gaussian approximation.
In this case the results of modern optimal control theoryWe assume that the feedback ratés much larger than the
apply, since the dynamics of the resonator are equivalent tgystem's small intrinsic damping, and we therefore drop

that of a classical oscillator driven by Gaussian noise, sq damping terms proportional tB from the above equa-
long as we restrict ourselves to a linear external f6r€e. one “This approximation is easily justified for current ex-

This allows us to obtain the optimal feedback algorithm in aperiments
straightforward manner. Choosing the minimization of the The stéady—state solutions to these equations are
energy of the resonator as the feedback objective it turns out

that as long as the force we apply is sufficiently large, this N

force should be chosen to e U)Z(ZW\/X, (32
F=—y(Mmawx)+{p)), (24

where y is a rate constant Whi_ch d.etermines Fhe overall gf):%[\/qu\wﬂ ﬁmw\/@\/x, (33

strength of the force. This equation gives an optimal perfor- V2k

mance so long ag> wq, which is within reach of current
experiments, as detailed below.

To calculate the average energy of the controlled resona- pr_WA' (34)
tor, we first need the equations of motion for the means and
covariances ok andp in the continually observed and con- where
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A+1 V. ESTIMATES FOR ACHIEVABLE TEMPERATURES

Current refrigeration technology allows experiments on
k# 2| k+ (1— k) B+ ———cot nanomechanical resonators to be performed at temperatures
—|1+16 2h keT ' of about 100 mK. It is therefore sensible to assume that the
m2w? feedback algorithm will be applied to a device which is ini-
(35 tially at this temperature. In such experiments the resonators
typically have fundamental frequencies in the range

In the limit of both large and small values kf A ~Kk. _ 2
The average energy of the resonator under feedback corf19_1_100 MHz. As our example system we take a realistic

trol, being the expectation value of the Hamiltonifiq. resonator withfo=12 MHZ’. which is .6'“m in length,
(25)] averaged over all trajectories, is a linear combination o0 MM Wide, and 150 nm thick. We restrict ourselves to rela-

the variances of andp, since the expectation values of bot '

mwor ﬁwo ) ] 2

h tively low frequencies because of the limits of feedback cir-

x andp are zero. These variances are the sum of the intrinsi€Uitry, which we estimate can easily operate at 50 MHz. The
variances of the Gaussian steady state for each trajectory, affective mass of such a resonator is roughly ¥tkg. An
the variances of the means Bfand p for each trajectory achievable quality factoQ is on the order of 10
(usually referred to as theonditionalmeans across all tra-  Realistic values for the resistances and capacitances of the
jectories. We can calculate these latter variances, which wisinctions of a SET which would be used to monitor the reso-
will denote byof,, anda?,, , by substituting into Eqs(26) nator areR;=R;=50 K} and C,=C,=100 aF, and we
and(27) the solutions for the steady-state values of the variP!ace itd~100 nm from the resonator. We estimate that the
ance&ri and 0)2(’), and solving for the first and second mo- capacitance between the gate of the SET and the resonator
ments of the conditional meaf%One obtains will be roughly C4=50 aF, so thaCs =250 aF Cy=2C;
+Cy). Itis important to note that the analysis we use in the
(Y2 + yo+ v?) V202 3/2 app_end_lx to ob_taln the noise spectra is only a good appro_xi—
= mation in certain parameter regimes. In particular, we require
thatVy, being the drain-source voltage across the SET, sat-

2
o0~ 8ky(w+7y) * 8k(w+ 'y)A

3 K Bh2 isfiesVy4<e/Cs, and thatk/3<1, as discussed in Sec. lll.
+ A%+ To apply the feedback force, we place the resonator
16ky(w+y) Mo y(w+7y) 100 nm from the actuating gate, and allow the controller to
5 \/K_Bk wA vary the voltage difference betvyeen the ga_lte and the resona-
+— | \2A+— (3¢) torfrom—4 to4 V. The capacitance of this arrangement is
2km(w+y) 2y about 50 aF, so the maximum force that can be applied to
) s - ) the resonator is of the order of 1®N. This corresponds to
, Mo’ (oty) m°w A2 kBh y~1.08x 10" s™1, which is much larger tham andI’, as
Tp~ 8ky + 16ky + Y required by the optimal control condition and truncated

, Gaussian approximation used in Sec. IV.
. Mo fi\/K,BkA 37 In evaluating the effectiveness of the feedback loop at
4ky ' cooling the resonator, it should be noted that the concept of
. temperature is only well defined for a system at equilibrium
Thus the average energy of the oscillator, under feedback, {ith a thermal reservoir. While the resonator starts at thermal

. equilibrium, the action of the feedback loop is to reduce the
E= Emw2(0'2+0'2 )+‘7p+"<p> (39) energy of the resonator so that it is far from equilibrium.
2 x 1T 2m Thus, when we quote results for the achievable steady-state

effective “temperature,” we will mean the temperature

mo? 2 . @ Kk Bh? which the resonator would have if it were in thermal equi-
=gk | VAATAT S AT 4_7A " 2my librium and had the average energy achieved by the feedback
loop.
fwkBK I3 Before giving theoretical estimates of the achievable
Yo | VAT Z’A : (39  steady-state effective temperatu@r equivalently, the

steady-state average occupation number of the oscillator,
Here we have used the simplifying assumptigr w, since  (N)=(a'a)), we need to explain two subtleties which affect
this is inherent in the optimal control condition. the presentation of our results. When one examines the de-
It is clear from Egs(35) and(39) that reducing the back- pendence of the steady stad) on the gate voltage, one
ground temperature allows for lower final temperatures. Exfinds that it oscillates very rapidly, with minima occurring in
tremely low values ok lead to heating, as can be seen fromclosely spaced pairs. Sint& is experimentally easy to tune,
the fact thatA ~k. For largek (corresponding to large gate all else being equal it would make sense simply to plot these
voltage, the increased sensitivity of the measurement canminima and ignore the complex structure. However, as dis-

cels the increased disturbance due to the measurement, withissed in Sec. lll, our results are more trustworthy the
the result that the minimal temperature levels offkags ~ smallerk/B, but this quantity is not necessarily small at the
increased. minima. The situation is shown in detail in Fig. 2, in which

235328-6



FEEDBACK COOLING OF A NANOMECHANICAL RESONATOR PHYSICAL REVIEW B58, 235328 (2003

118 FIG. 2. The steady-state aver-
age occupation numbe(iN), as a
- function of the gate voltagésolid
.................................................... 14 E line), plotted along with the ratio

2 k/B (dashed ling and the drain-
........................................................................... - source Current’|ds (dot_dashed
line). The lower dotted line gives
105 the minima of{N), and the upper
dotted line gives the values ON)
whenk/B=0.1.

k/B and {N)

3.9 3.901 3.902 3.903
VvV (V
)

0
3.906

we display, as a function &f;, two pairs of thg/N) minima,  gate voltage aV,~1 V, then the noise sources are
as well ask/B and the currentys. In view of this, when

plotting results in what follows, we will show both the B=1.01x103 m 2571, (40)
minima of the effective temperature with respecMg, and
the (somewhat highgreffective temperature which results if k=0.184 B, (41)

we demand thak/B=<0.1. For clarity the points at which
k/B3=0.1 are also displayed in Fig. 2. As will be clear from 7
Figs. 3 and 4, foilf =100 mK andQ= 10", the effect of the cothzﬂ:9.25 B, (42)
restrictionk/ 8=<0.1 on the achievable temperature is small. 2h kgT

In addition, k/B remains fairly small at the minima. Since
this is the case, when we quote values in the following, we
\év(;llrglsvpeo::j?n\éa\llieljezbfg;zd at the minima, along with thetive temperatureT o, at the minima, we find thah =5.1

As an example of the relative magnitudes of the various® 107>, andTer=2.11 mK. This corresponds to an energy

— — 26 H
noise sources at the minima displayed in Fig. 2, if we set th@f about Es=2.91x10 *J, and an average occupation

drain-source voltage aV=e/(4Cs)=0.16 mV and the number(N)=3.17. While this is very encouraging, ideally

m(,()or

nd the correlation coefficient is=0.638.
Using the above parameter values to calculate the effec-
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FIG. 3. Estimates for the minimum achievable effective tem- FIG. 4. Estimates for the minimum achievable effective tem-
peratures as a function of gate voltage for a range of initial temperatures as a function of gate voltage for a range of resonator
peratures,T. On this plot, the increase in achievable temperaturequality factors and an initial temperature of 100 mK. The dotted
which results from the restrictiok/3=<0.1 is virtually impercep- lines give the minimum temperature under the additional restriction
tible for T above 100 mK. Foff =100 mK the dotted line shows thatk/8<0.1. From top to bottom, the quality factors aré’ 100",
the result under this restriction. From top to bottom, the initial tem-10°, and 16. A quality factor of 16 is achievable with current
peratures are 2 K, 1 K, 500 mK, and 100 mK. technology.
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one wants to cool below the energy of the first excited statewe do not know exactly how our approximations will fail as
and we now examine what is required to do this. Vys approacheg/Cy , and we lack a complete theory of the
While classically an increase in measurement strengtlSET once more than two island states play a significant role
would automatically lead to an improved tracking of thein the dynamics, we have chosen to stay below that limit.
resonator, and therefore a more efficient cooling, quantum We have made a few additional simplifying assumptions,
mechanically the situation is more complex due to the fachs a way to indicate a goal, rather than an immediately
that a more precise measurement also leads to increasadhievable experimental realization. First, we have assumed
heating due to back-action. Nevertheless, in the present caseperfectly efficientand infinite bandwidthmeasurement —
one finds that the increased sensitivity of the measuremettat is, that no electron passes the detector without being
with increasing measurement strength effectively cancels thidetected. While detection efficiency is not as much of a prob-
heating, and as a result a larger valueVgfcorresponds to lem here as in optical experiments, detectors will necessarily
better cooling. However, after a sharp increase in coolinde inefficient to some extent. Second, we have assumed a
with increasingVy, the minimal temperature levels off, so a perfect, noiseless feedback. In reality, the actuating gate ap-
greaterVy no longer provides much benefit. In addition, at plying the feedback will not provide a perfect noiseless volt-
some value ofVy snap-in is likely to occur as the force age. Also, we have assumed that the actuating gate does not
between the SET gate and the resonator becomes too strorajfect the SET. This last assumption is realistic, however, for
This voltage, in our example system, is estimated to bdéwo reasons. First, the resonator itself acts as a shield be-
roughly 4 V. As a result, we limit ourselves ¥g<4 V. At  tween the gate and the SET. Second, since the observer
Vg=4 V the steady-state minimum energfE=9.83 knows the voltage on the feedback gate, she can subtract that
x10727 J, which is below the energy of the first excited effect off the SET signal, albeit with the addition of some
state. This corresponds tB.3=0.71 mK and(N)=0.74, noise.
with k/8=0.28. Thus, if the energy were to be measured As mentioned previously, the dynamics of a quantum me-
directly, immediately after turning off the feedback, energychanical harmonic oscillator and a classical one are indistin-
jumps as a signature of quantum behavior may well be obguishable as long as the wave function is Gaussian, which is
servable. As an indication of the return from increasing thethe case in the present analysis. Therefore, although the os-
gate voltage, the minimum steady-state energ§is1.58  Cillator is near the quantum mechanical ground state, the
X102 for Vg=~2 V, which corresponds t¢N)~1.5, SET measurement of position will not show any quantum
with k/3=0.21. behavior. In the face of these limitations, it is a pleasant

In Fig. 3 we plot the theoretical estimates for the achiev-result that experimentally obtainable situations today allow
able steady-state effective temperature as a functiah éér  for the feedback cooling of a resonator to the point that quan-
a range of starting temperatures. The solid lines correspori@m behavior could become distinguishable from classical
to the absolute minima, and the dotted lines to the minimunPehavior with an appropriate measurement scheme.
values under the restriction thet=<0.1. Of particular in-
te_rest is the fz_ict _that for a star_ting_tgmperature of 2i.K, _ ACKNOWLEDGMENTS
with pumped liquid H& we obtain minimum temperatures in
the range of 50 mK. Thus, even for an initial temperature of The authors would like to thank Miles Blencowe, Alex-

2 K, feedback cooling might well be able to compete with ander Korotkov, Daniel Steck, Howard Wiseman, Bernard
dilution refrigerators. If the resonator is first cooled in a di- Yerke, and Yong Zhang for helpful conversations and sug-
lution refrigerator, and then feedback cooled, the semigestions. Figure 1 is reprinted courtesy of Los Alamos Sci-
classical theory predicts achievable temperatures belownce. This research was supported in part by the Department
1 mK, as discussed above. In Fig. 4 we plot the dependenc® Energy, under Contract No. W-7405-ENG-36.

of the minimum temperature oW, for a range of quality
factors, which shows that somewhat lower final temperatures

. . . APPENDIX: SPECTRA OF THE SET SHOT NOISE
could be achieved by increasiii

AND BACK-ACTION

Here we discuss briefly how the expressions for the shot
noise and back-action of the position measurement via a SET

The results obtained above are consistent with heuristiare obtained. For more details the reader is referred to Zhang
arguments. The response of cooling to the measuremeand Blencow (from which we obtain most of the following
strength is as expected: for very weak continuous measurexpressionsand Korotkov?
ments, we do not learn enough about the state of the system The SET consists of a central island, which electrons tun-
to cool it effectively, and can in fact heat the system due tanel in and out of via junctions on either side. If one requires
acting on our poor information. For very strong continuousthat the spacing between the energy levels of the electron
measurements, we gain sensitivity, but inject more quanturstates on the island are sufficiently large compared to the
back-action, and approach a minimum only asymptoticallyvoltage drop across the SET, then only two island states will
The range of improvement is limited, however, and beyond d&e appreciably populated, these being the states in which
few volts, the benefits may not warrant the additional effort.there aren andn+ 1 electrons on the island, for someThis

Higher drain-source voltages provide a larger signal-tois because the transition rates which connect these states to
noise ratio, and therefore improve cooling. However, sincehe other states are suppressed. The valueaain be set by

VI. DISCUSSION AND CONCLUSION
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biasing the central island. In particular,is determined by (ag+bf)%(a—b)2+ w2(ag—bf)?
the condition C(w)= .
4ablab[(a+Db)2+ w?]+ (f—g)(a?g—b?f)]
Cq (A11)
n< ?)(Vg_vd42)<n+ 1. (A1) The force from the island on the resonator is givefi by
As a result, we can write a master equation for the probabil- F=(A/d)[C(Vys—2Vg) — nej?, (A12)

ity density for the occupation of the two states. Denoting thisyith A=Cg(ZC—Cg)/(ZC§). Thus, using Eq(A9) we have
density bya=[o(n),o(n+1)]7, we have
S(w) 2abeA? [2C(Vys—2Vy) —e(2n+1)]?
w)= .
- (a+b)d? (a+b)?+ w?
a, (A2) (A13)

Recall that in deriving these expressions we require that

wherea(n) is the transition rate fronm to n+1, andb(n  the two-level approximation is valid, and this demands that
+1) is the transition rate from+1 ton.

d?r_(—a(n) b(n+1)
dt | a(n) —b(n+1)

If we denote the tunneling rates into the island across the Vys<elCs, (A14)
source junction and the drain junctigsee Fig. 1asa_(n)
and a_(n), respectively(the plus and minus subscripts KgT<eVs. (A15)

record whether the tunneling event has a positive or negatiwla
contribution to the SET currentand out of the island ds,
andb_, respectively, then (An=V49/(R;Cs)

he tunneling rates are given by

a.(n)= =~ =
a(n)=a.(n)+a_(n), (A3) 1-ex = (An=Ve)/T] a6
(—An=V4)/(R,Cs)
b(n+1)=b,(n+1)+b_(n+1). (A4) b.(n+1)= —
1-exgd —(—AnxtV4)/T]
It is also useful to define where
f(ny=a,(n)—a_(n), (A5) B CgVy CyViys 1
An=——-——-n—3,
e 2e 2
g(n+1)=b,(n+1)—b_(n+1). (AB)
~ GCsV
In what follows we will repress the arguments of these func- Vis= ;eds, (A17)
tions, so thab=a(n), b=b(n+1) etc. The solution to the
master equation is
5 CskgT
B ~ - 2
()= (b b 42 b)e—<a+b>t o© ¢
a a —a b (a+b) Note that the condition which determin@s[Eq. (A1)] is

(A7) equivalent to—0.5<An<0.5.
From the expressions for the noise spectra we see that

From this it is straightforward to calculate the average, . < irces of noise are effectivel whiiedependent of
steady-state current flowing through the SET, the noise spec- y P

2 ; 2
tra of the current,S(w), along with that of an arbitrary w). S0 long asw® is much_ less thaa(n) +b(n+1)]". l.f
function, ¢(n), of the island electron numbeS,(w), and this is the case then the simple quantum theory of continuous

their mutual correlation spectrunG(w). The average cur- position measurement presented in the main body of the pa-
’ per provides a good model for the SET measurement. Note

rent s that the actual back-action noise on the position of the reso-
C \ (ag+bf) nator is the force noise filtered through the resonator spectral
|=e| — (agrol) (Ag)  function. This is therefore
Cy/ (atb) ’
2
and the spectra are S(w)= Sel @)/ Mey (A18)

(w’— wé)z-i- wza)S/Q2 '

2ab [¢(n)—¢(n+1)]?

Sy(w)= (A9) and has the same form as that predicted using the quantum
(a+b)  (a+b)2+ w? mechanical modelEq. (11)], so long as the force noise is
white.
2622 (f—g)(a2g—b2f) We must therefore evaluatga(n)+b(n+1)]? for the
S(w)= >l a PR (A10) range of parameters of interest, and verify that it is much
(a+h)Cs (ath)*+w larger thanw? over the relevant frequency range. First we
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note that the form of the spectral equations is such that they [a(n)+b(n+1)]=2x10% (A18)

are periodic in the gate voltage. That is, the valuea(of)

andb(n+ 1) depend only orAn, not on the particular value

of n in question. As a result we merely need evaluatefor the range of initial temperatures that we consider, and this

[a(n)+b(n+1)]? for a single value ofn, and check all is much greater than the rangewfelevant for the dynamics

values ofAn between—0.5 and 0.5. of the resonator, as required. Thus, we can doofom the
Substituting in realistic parameter valu@hose that we expressions for the specti&gs. (A10), (A13), and(A11)],

use in our examples in the body of papir Egs.(A16) and  and use these to determine the parametefs andx in the

(A17), we find that, regardless of the value &h, model of the quantum position measurement.
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in our optical scattered light image may consist
of primordial solid material.

Within ~50 AU of the star, the time
scales for grain removal by collisions and PR
drag become significantly shorter than the
stellar age. Primordial dust at the inner limit
of our images (Figs. 1 and 2) has mostly
vanished, and the grains observed here, as
well as those discovered as close as 17 AU
from the star (/4), must be continually re-
plenished by the collisional erosion of much
larger objects such as comets and asteroids.
The existence of planetesimals in this region
lends plausibility to the argument that the
same objects will form planets by accretion.
Given that AU Mic is only ~10 My old, we
may be able to observe planets that are still in
the process of accreting mass, or at least
discern disk structure that is sculpted by plan-
et-mass bodies. Because AU Mic is closer to
the Sun than B Pic, the 2 to 30 AU zone
where terrestrial and gas giant planets might
form can be resolved by current and future
instrumentation (fig. S5). Planets around AU
Mic may also be detected by indirect meth-
ods. The low stellar mass means that the star
will display a significant astrometric reflex
motion (2 milli—arc sec for a Jupiter analog).
The near edge-on orientation favors planet
detection by transits of the stellar photo-
sphere. Finally, if a planet is detected by
radial velocity techniques, then the near
edge-on orientation gives the planet mass by
constraining the sin(i/) ambiguity intrinsic to
these measurements.
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Generation of

Single Photons from One Atom
Trapped in a Cavity

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck,
A. Kuzmich, H. J. Kimble*

A single cesium atom trapped within the mode of an optical cavity is used to
generate single photons on demand. The photon wave packets are emitted as
a Gaussian beam with temporal profile and repetition rate controlled by ex-
ternal driving fields. Each generation attempt is inferred to succeed with a
probability near unity, whereas the efficiency for creating an unpolarized pho-
ton in the total cavity output is 0.69 * 0.10, as limited by passive cavity losses.
An average of 1.4 X 10* photons are produced by each trapped atom. These
results constitute an important step in quantum information science, for ex-
ample, toward the realization of distributed quantum networking.

A crucial building-block for quantum informa-
tion science is a deterministic source of single
photons that generates one-quantum wave pack-
ets in a well-controlled spatiotemporal mode of
the electromagnetic field. For example, protocols
for the implementation of quantum cryptography
(1) and of distributed quantum networks rely on
this capability (2), as do models for scalable
quantum computation with single-photon pulses
as flying qubits (3—6).

The earliest observations of single-photon
emission used the fluorescent light from sin-
gle atoms in two- and three-level configura-
tions (7—9), and thereby produced light with
manifestly quantum or nonclassical charac-
ter. Fluctuations in the number of atoms pro-
vided inherent limitations to these original
schemes, and have since been mitigated by
isolating single ions (/0) and molecules (71,
12) and by using individual quantum dots
(13, 14) and color centers (15, 16).

With a single dipole, pulsed excitation allows
for “triggered”” emission of a single photon with-
in a prescribed interval, albeit into 41t steradians.
To achieve emission as a directed output with
high efficiency, the dipole emitter can be placed

Norman Bridge Laboratory of Physics 12-33, Califor-
nia Institute of Technology, Pasadena, CA 91125,
USA.

*To whom correspondence should be addressed. E-
mail: hjkimble@caltech.edu

inside an optical resonator, as by coupling single
quantum dots to microcavities (/7—19). These
experiments make use of the Purcell effect to
enhance radiative decay into a cavity mode of
interest and thereby achieve a deterministic bit
stream of single-photon pulses (20) in a regime
of weak coupling in cavity quantum electrody-
namics (cQED).

By contrast, the generation of single photons
within the domain of strong coupling in cQED
(21, 22) enables diverse new capabilities, includ-
ing the reversible transfer of quantum states be-
tween atoms and photons as a fundamental prim-
itive for the realization of quantum networks (2).
A single photon source consisting of a trapped
atom strongly coupled to an optical cavity rep-
resents an ideal node for such a network, in
which long-lived internal atomic states can be
mapped to quantum states of the electromagnetic
field by way of “dark™ eigenstates of the atom-
cavity system (23). By way of a quantum repeat-
er architecture, converting stationary qubits to
flying qubits in this way enables distributed
quantum entanglement over long distances (2).

We report on the deterministic generation
of single-photon pulses by a single atom
strongly coupled to an optical cavity in a
configuration suitable for quantum network
protocols. Single cesium atoms are cooled
and loaded into an optical trap (Fig. 1A),
which localizes them within the mode of a
high-finesse optical cavity (24-26). The atom
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is then illuminated by a sequence of laser
pulses {QJ(1),Q/(t)}, the first of which,
Q,(#), drives a “dark-state” transfer between
hyperfine ground states, F = 3 — 4 (Fig. 1,
B and C). In this process, one photon is
created in the cavity mode because the atomic
transition F' = 3’ — F = 4 is strongly
coupled to the cavity field with rate g (2, 23).
The emitted photon leaves the cavity as a
freely propagating, spatially Gaussian wave
packet whose temporal profile is determined
by the external field Q,(¢) (2, 20, 23). The
atom is then recycled back to the original
ground state by a second laser pulse, €),(7),
and the protocol is repeated for subsequent
single-photon generations.

The lifetime for a trapped atom in the
presence of the driving Q, , fields is 7, =
0.14 s, which should be compared to the
repetition period Az = 10 ps for single-
photon generation and to the lifetime of 3 s
recorded in the absence of the (), , fields
(25). Given our measured overall efﬁc1ency
a = (2.4 = 0.4)% for escape from the cavity,
for propagation, and for photodetection (26),
this means that on average, we generate (de-
tect) about 1.4 X 10* (350) single-photon
pulses from each trapped atom.

The Gaussian beam emerging from the cav-
ity mirror M, is directed to a beam splitter and
then to two photon-counting detectors (D ,,Dy,).
For each atom £, photoelectric pulses from
D, p that occur during the trapping interval are
stamped with their time of detection (with & =
2 ns time resolution) and recorded for later
analysis. An example of the pulse shape for
single-photon generation is shown (Fig. 2A)
over the detection window [#,¢/-+8¢] within
which the control field Q.//(7) is ON where 8¢ =
1 ws and ¢ is the onset of Q /(7). The histogram
of the total counts n(f) from both detectors

I bmned according to their delay with re-
spect to #4, is a sum over all repeated trials {;}

Fig. 1. Illustration of A
the generation of sin-
gle photons by one
atom trapped in an
optical cavity. (A) A
single Cs atom is -

_\v/ﬁ

of the generation process from all atomic trap-
ping events {k}. For the particular choice of
Q,(#) used here, single-photon pulses have du-
ration T = 120 ns (full width at half maximum).
The extended tail for n(f) likely arises from
generation attempts for which the atom resides
in Zeeman sublevels that are weakly coupled to
the control field at the beginning of the €),(?)
pulse (27, 28), as well as from roughly twofold
variations in the coupling coefficient g(7*) (29).
Qualitative agreement of this measured pulse
shape has been obtained with multilevel quan-
tum Monte Carlo simulations (28).

To investigate the quantum character of
the emitted field, we calculate the function
C(7) obtained by cross-correlating the photo-
electric counting events from the detectors
D,  as a function of time separation 7 (Fig.
3) (26). The large suppression of C(t) around
T = 0 strongly supports the nonclassical char-
acter of the light pulses emitted by the atom-
cavity system. The likelihood of two photons
being detected within the same trial is greatly
reduced relative to that for detection events in
different trials.

Suppression of two-photon events is also
quantified by the time dependence of the photon
statistics over the course of the pulse (Fig. 2, B
and C). Figure 2B displays the integrated prob-
abilities for single P,(f) and joint P,(f) detection
events for times ¢ after the onset 7 of the control
pulse /(#), with P,(f) normalized to P,(1)/2. We
calculate P (f) and P,(f) for an effective single
detector without dead time or after-pulsing, and
define P, , = P, ,(31). Over the duration of the
control pulse 0 = ¢ = ¢, P (¢) rises to a final
value P, = 0.0284; that is, the probability of
registering a single photoelectric event in a trial
is 2.84%. The lower trace in Fig. 2B quantifies
the suppression of joint detection events relative
to that expected for a weak coherent state, which
would have 2P,(f)/P,(f) =~ P(f) (as we have
confirmed in separate measurements). By the

Qu

trapped in a cavity Y S : V
formed by the reflec- M, Q, M- ‘7
tive surfaces of mir-

rors (M,, M,) and is
pumped by the exter-

Q,

nal fields (Qi, Q) [
(25). (B) The relevant B
atomic levels of the Cs 3’

, line at 852.4 nm.
Strong coupling at
rate g is achieved for
the transition F’ = 3’
— F = 4 near a cavity
resonance, where g =
2m X 16 MHz. Atom  \_

| Q,

C Trialj-1  Trialj

ot=1 us
5us

IS
Q, Q Q Q
\__At=10 us y

Trial j+1

L

and cavity decay rates

(y,k)/2m = (2.6 MHz, 4.2 MHz). (C) The timing sequence for the generation of successive single

photons by way of the (), , fields.
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end of the control pulse, 2P,/P, has reached the
value 1.8 X 1073, which represents a 16-fold
suppression of joint detection events relative to a
Poisson process.

Figure 2C examines the ratio R(f) =
[(P2())/(2P,(1))], where R ~ 1 for a weak
coherent state and increases with suppression
of two-photon events. Significantly, R is in-
dependent of propagation and detection loss-
es for P, >> P,. The trace in Fig. 2C restates
the result that two-photon events are greatly
suppressed relative to a coherent state, name-
ly R = R(dt) = 159 £ 1.0. Also, in Fig. 3,
the average area of the large peaks in C()
around T = jAt should exceed that of the
central peak around T = 0 by a factor of about
R, which we have confirmed.

The background rate during the (), drive
pulses is time independent, and can be obtained
from the record of photoelectric detections when
no atom is trapped. The measured background
count probability is P, = 2.7 X 10~* for the
entire window, of which Py = 0.82P; comes
from detector dark counts, and the rest come
from various sources of scattered light. For an
ideal single-photon source, coincidence events

5000 [~
n(t)

2500 -

0.03 -

0.02

S P1(1‘)

- - 2P,(t)/P,(t)

20
R(t)

10

0 t t +
600 900
t(ns)

Fig. 2. (A) Total histogram of photoelectric de-
tection events n(t) from both detectors D, ;. In all
cases, the control field Q,(t) is initiated at time
t = 0 with rise time 100 ns. (B) The integrated
probability P.(t) for a single photoelectrlc event
and ratio 2P ( )/P,(t), where P,(t) is proportional
to the |ntegrated coincidence probablllty for joint
detections from D, ,. For a weak coherent state,
the two traces would nearly overlap. (C) The ratio
R(t) = [(P,2(t))/(2P,(t))] versus time, which in-
dicates as high as 20-fold suppression of coin-
cidences relative to a Poisson process.
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at D, ; in the same trial would arise only
because of background counts, because the
source never emits two photons in one trial.
Using the known values of P,(¢) and Py, the
background-limited value R;(#) for this ideal-
ized scenario can be predicted. Our measured
values are actually lower than this prediction
[Rg = Ry(8¢) = 52.5], indicating a substantial
rate of excess coincidences.

These excess coincidences most likely arise
from rare events with two atoms trapped within
the cavity (26). We test this hypothesis in Fig. 4
by noting that the two-atom population should
decay at roughly twice the rate of the single-
atom population [as we have confirmed in other
measurements related to figure 4 in (25)]. The
probability P, for joint detection should there-
fore diminish as a function of duration of the
trapping interval, with a corresponding increase
in the ratio R, which is precisely the behavior
evidenced in Fig. 4.

Operationally, we bin all our detection time-
stamps according to their delay with respect to
the trap-loading time (¢ = 0), and then compute
photon statistics separately for each bin. Only
four intervals in ;. are used owing to poor sta-
tistics for the coincidence counts, especially for
large #,. The analysis is the same as for Fig. 2,
but we concentrate on the value R = R(d¢), at the
end of the €),(#) pulse window. Furthermore, the
ratio R plotted in Fig. 4 is obtained from R with
the contribution from the measured dark-count
probability P, removed, thereby providing a
characterization of the atom-cavity source that is
independent of the dark counts for our particular
detectors. The results clearly support the hypoth-
esis that rare two-atom events are responsible for
our excess of coincidences.

Also shown in Fig. 4 as the full curve is the
result for R, from a model calculation that
assumes that a fraction v, of our data are ac-

20

C()

15 ~

IIENEEINEEE

-40 -20 0 20 40
T (us)

Fig. 3. Time-resolved coincidences C(1) as a
function of delay T between detections at D g.
Around T = 0, C(7) is suppressed for two events
from the same trial relative to its values for T =
JjAt for two events from different trials, where
Jj = %£12,.... As indicated in Fig. 1C, At = 10
s is the repetition interval for the generation
of single photons and 8t = 1 s is the duration
of our control pulse Q5(t).

quired with a single trapped atom, and that a
fraction m; = 1 — m, has two atoms trapped,
with m;,m;; functions of the time 7, within the
trapping interval (26). The correspondence be-
tween the model and our measurements sup-
ports the conclusion that excess coincidences
arise from rare events with two atoms loaded
into the trap. From this model, we infer that (i)
~3% of the trials are taken with two trapped
atoms; and (ii) the generation of single photons
succeeds with probability consistent with unity,
&g = 1.15 £ 0.18 as constrained by our abso-
lute knowledge of the various efficiencies (26).

Given our ability to distinguish multiatom
trap-loading events in real time [as demon-
strated in figure 4 of (25)], events with N =
2 atoms trapped in the cavity could be active-
ly discarded; alternatively, the extra atoms
could be heated out of the trap, before even
attempting single-photon generation. More-
over, in its current implementation, our atom-
cavity system generates unpolarized single
photons, and a well-defined polarization is
subsequently selected with 50% efficiency.
This efficiency could be greatly improved by
separating the functions of cooling and of
single-photon generation for the (), control
field, so that the atom is optically pumped
into a known Zeeman sublevel before excita-
tion. This separation of function would allow
the interaction configuration of (29) to be
implemented, making the pulse shape and
phase for the photon wave packets insensitive
to randomness of the atomic position.

We have used a single atom trapped with-
in a high-finesse optical cavity as an efficient
source for the generation of single photons on
demand. The photons are emitted as a Gauss-
ian beam with user-controlled pulse shapes.
As shown in Fig. 4, the average ratio of
single- to two-photon event probabilities is

- I -

1000 T 3
Ry E 3
100

10—|' | | Il ] 1 'r

II T TTTTIT

tr(s)

Fig. 4. Evolution of the ratio Ry, = [(P,%)/(2P,)]
versus trapping time t, here corrected for
detector dark counts. The data points are ex-
perimentally determined as discussed in the
text, with vertical error bars based on counting
statistics of coincidence events, and horizontal
bars indicating the bin widths in t ;. The full
curve is the prediction from our model calcu-
lation that includes (rare) two-atom events.
The dashed line represents the measured over-
all average of R, for all t ..

R, = 20.8 = 1.8, whereas R, = 150 for

0 —
single-photon generation at long trapping
times 7 = 0.4 s. With this large suppression
of two-photon probability, the Mandel-Q pa-
rameter is determined almost exclusively by
propagation efficiency. For example, for po-
larized (unpolarized) photon wave packets,
Q0 = —-0.34 = 0.05 (Q = —0.68 = 0.10)
referenced to the total cavity output from
(M,,M,). Absent passive losses from the cav-
ity boundaries, the generation of single pho-
tons succeeds with probability close to unity,
where this high success probability derives
from the near-ideal nature of the atom-cavity
interaction in a regime of strong coupling.
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Scalable photonic quantum computation through cavity-assisted interaction

L.-M. Duan! and H. J. Kimble?
! Department of Physics and FOCUS Center, University of Michigan, Ann Arbor, MI 48109-1120
2 Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, CA 91125

We propose a scheme for scalable photonic quantum com-
putation based on cavity assisted interaction between single-
photon pulses. The prototypical quantum controlled phase-
flip gate between the single-photon pulses is achieved by suc-
cessively reflecting them from an optical cavity with a single-
trapped atom. Our proposed protocol is shown to be robust
to practical nose and experimental imperfections in current
cavity-QED setups.

Realization of quantum computation requires accurate
coherent control of a set of qubits. A small volume opti-
cal cavity provides a platform to achieve strong coherent
interactions between atoms and photons, and has been
exploited as the critical component in several schemes for
implementation of quantum computation and commu-
nication [1-3]. In a prototypical cavity-based quantum
computation scheme of Ref. [1], the atoms are adopted
as qubits while photons mediate the interaction between
them. Scaling to large-scale quantum computation via
this paradigm then requires that many atoms be localized
and separately addressed within a tiny optical cavity [1],
or alternatively be coherently transported into and out
of the cavity mode [4]. However, in spite of recent signif-
icant laboratory advances [5,6,4,7,8], these tasks remain
daunting experimental challenges.

Here, we propose a scalable quantum computation
scheme where qubits are encoded as polarizations of
single-photon pulses. An optical cavity with a sin-
gle trapped atom is employed as the critical resource
to achieve controlled gate operations between photonic
qubits and to act as a high efficiency single-photon de-
tector. The proposed computation architecture is based
on the state-of-the-art in cavity quantum electrodynam-
ics [5], can be readily scaled up to many qubits, and
could be integrated with protocols for the realization of
quantum networks [2].

Quantum computation with single-photon polariza-
tions as qubits [9,10] has the obvious advantage that the
number of qubits can readily be scaled up by generat-
ing many single-photon pulses. The main obstacle to
this approach is that it is exceedingly difficult to achieve
quantum gate operations between single-photon pulses.
The typical photon-photon coupling rate in available ma-
terials is orders of magnitude too small to allow for any
meaningful gate operation at the single-quantum level.
An interesting idea, as has been put forward recently in
the so-called linear optics quantum computation scheme
[11], is to achieve effective nonlinear interaction between
photons through feed-forward from high efficiency single-
photon detectors. Though this approach is a very impor-
tant advance, a significant obstacle is that the required

efficiency « of the single-photon detectors for scalable
quantum computing is extremely high (e.g., for gate suc-
cess with probability p ~ 0.99, o = 0.999987 [12]).

In our proposed scheme, we combine the advantage
of scalability from the photonic qubits and the power
of strong atom-photon coupling in a high-finesse optical
resonator. Such a cavity with one or few atoms in a
configuration of far-off-resonant interactions provides an
effective Kerr nonlinearity for the input light [10,13,14],
as was first observed in Ref. [10]. However, this nonlin-
ear phase shift is typically too small for realization of
the operation of the prototypical quantum Controlled-
NOT gate (C-NOT). Compared with the approach of
Ref. [10], our new protocol has the following significant
advances: (i) A different interaction mechanism between
photon pulses leads to a much larger effective interac-
tion rate sufficient for the realization of a quantum C-
NOT gate with current experimental capabilities. (i)
The conditional phase flip in our scheme is very insen-
sitive to variation of the atom-photon coupling rate, so
that high-fidelity gate operations can be realized even
if the atom is not localized in the Lamb-Dicke regime.
(#4i) The pulse shapes for pairs of interacting single pho-
tons suffer very small changes due to interactions with
the atom-cavity system, which is otherwise quite diffi-
cult to achieve [14]. (iv) Finally, the noise properties of
our scheme are quite favorable, and should allow signif-
icant improvement in the error threshold for large-scale,
fault-tolerant quantum computation.

The basis states for our qubit consist of two orthogonal
polarization states of a single-photon pulse, denoted by
|h) and |v). A series of single-photon pulses is generated
by emission from a single atom in a cavity [15,2]; single-
qubit operations on these photonic qubits are accurately
performed through polarization rotations. The critical
problem for quantum computation with these qubits is
to achieve a nontrivial two-qubit interaction. Here, we
choose the quantum controlled phase flip (CPF), where
the CPF gate for qubits j and k flips the phase of the
input state if both qubits are in |h) polarizations, and
has no effect otherwise. The CPF gates, together with
simple single-qubit operations, realize universal quantum
computation [16].

As illustrated in Fig. la, the CPF gate for two arbi-
trary pulses j and k is implemented by simply reflect-
ing them successively from a high-Q cavity which con-
tains a single-trapped atom. The atom has three rele-
vant levels as shown in Fig. 1b, and is initially prepared
in an equal superposition of the two ground states, i.e.,
|®ai) = (|0) + 1)) /v/2. The atomic transition [1) — |e)



is resonantly coupled to a cavity mode ap, which has A
polarization and is resonantly driven by the h polariza-
tion component of the input single-photon pulse. The v
polarization component of the input pulse is reflected by
the mirror M.

la qublt j qublt k 1b _le
( )—Eﬂ{i} '
0
ANNA 0
0}
FIG. 1. (a) Schematlc setup to implement the controlled

phase flip (CPF) gate between two single-photon pulses j and
k. With a polarization beam splitter (PBS), the h-polarized
component of the single-photon pulse is reflected by the cav-
ity, while the v-polarized component is reflected via the mir-
ror M. The optical paths from the polarization beam splitter
(PBS) to the cavity and to the mirror M are assumed to be
equal. (b) The relevant level structure of the atom trapped in
the cavity (e.g., the states |0) and |1) could denote hyperfine
states of an alkali atom in the ground-state manifold while |e)
is an excited state).

Before describing the detailed model and supporting
calculations, first we summarize the basic ideas of our
scheme, which consists of two critical steps. (4) By re-
flecting one single-photon pulse, say j, from the cavity
and the mirror, a CPF gate between the atom and the
pulse j is ach1eved as descrlbed by the unitary operator
UlgPF e'm10a 0I®1R);(hl - B) A composition of the CPF
gates between the atom and the pulses j, k generates a
CPF gate between the pulses j and k described by the
unitary operator U]CPF ”‘h> (rl@IR) (Pl while restor-
ing the atom into its initial state |®,;). Experimentally
the composition is performed by successively “bouncing”
the pulses from the cavity (see Fig. 1a).

Step (A) — When the incoming photon is v polarized,
it will be reflected by the mirror M without any phase
and shape change. When the incoming photon is in A po-
larization, it is resonant with the bare cavity mode if the
atom is in the |0) state and thus acquires a phase of '™
after its reflection; however, if the atom is in the |1) state,
the frequency of the dressed cavity mode from the reso-
nant atom-cavity coupling is significantly detuned from
the frequency of the incoming pulse. In this case, the
cavity functions in the same fashion as the mirror M and
the photon pulse is reflected without a phase change. A
composition of the above sub-processes realizes the de-
sired CPF gate U C;P F between the atom and the photon.

Step (B) — Critical to the second step of our protocol
is the following operator identity:

CPF |\Ijjk> ® |@gi) = Uac;'PFRa (=7/2) Uzzc;cPFRa (m/2)
xUSPE [Wik) @ [®ai) (1)

where |¥;;) denotes an arbitrary state of the photonic
qubits j and k, and R, () is a single-bit rotation on
the atom which transforms according to R, (0)]0) =

cos6/2|0) + sinf/2|1) and R, (0)|1) = —sinf/2|0) +
cos/2]1). The identity (1) demonstrates that the CPF
gate between two arbitrary single-photon pulses j and k
can be implemented by first reflecting the pulse j from
the cavity as shown in Fig. 1la, then applying a (7/2)-
pulse laser on the atom, then reflecting the pulse £ from
the cavity, then applying a (—m/2)-pulse laser on the
atom, and finally reflecting the pulse j again from the
cavity.

The CPF gate Uacjp F between the atom and the pho-
ton pulse can also be used to achieve quantum non-
demolition (QND) measurement of the photon number
in the pulse. For this purpose, we simply prepare the
atom in the state |®,;), reflect the to-be-measured pho-
ton pulse from the cavity, apply a R, (7/2) rotation on
the atom, and finally perform a measurement of the
atomic state in the basis {|0),|1)}. The measurement
outcome is “0” if and only if the h component of the
pulse has a photon. By the same avenue, we can also
measure the parity of several photonic qubits (“parity”
concerns whether a series of pulses has a total even or
odd photon number in their A components) by succes-
sively reflecting them from the cavity, and can as well
measure the total photon number of both h and v com-
ponents of a single pulse by reflecting it twice from the
cavity with a polarization flip between the two reflec-
tions. Such QND measurements have wide applications
for quantum information processing [17,18]. Note that
the measurement of atomic internal states can be done
with near 100% efficiency through the quantum jump
technique [3]. So, the efficiency of our QND measure-
ment is principally only limited by the inefficiency of the
CPF gate between the atom and the photon pulse caused
by atomic spontaneous emission loss, which as we will see
later, is significantly less than the inefficiency of conven-
tional destructive single-photon detectors.

Now we present a detailed theoretical model to demon-
strate that the CPF gate UaC;PF between the atom and
the single-photon pulse j can be obtained simply by re-
flecting the latter from the cavity. The initial state of
the pulse j can be expressed as [Vp) ; = cp;j [h); +co; ),
where cp; and ¢,; are arbitrary superposition coefficients.
The polarization component states [u); (1= h,v) have

the form |u); = fo fi (t) airT (t) dt [vac), where f; (t) is
the normahzed pulse Shape as a function of time ¢, T' is
the pulse duration, aL" (t) are one-dimensional field op-
erators (cavity input operators) with the standard com-

mutation relations [a@” (t) ,aZfT (t )] = 8,0 (t—1")[19],

and |vac) denotes the vacuum of all the optical modes.
The cavity mode ay, is driven by the corresponding cavity
input operator a}* () through [19]

— (iA+w/2)an = VEay (t) . (2)

where k is the cavity (energy) decay rate and the Hamil-
tonian

dh = —i[ah, H]

H = g (le) (1] an + 1) {e| a},) (3)



describes the coherent interaction between the atom and
the cavity mode ap. The detuning A in Eq. (2) is meant
to be 0 for our scheme, but we retain it here for subse-
quent pedagogical purposes. The cavity output af“ (¢) is
connected with the input by the standard input-output
relation

af™ () = ajf' (1) + v/, - (4)

As the v component of the pulse is reflected by the mirror
M, we simply have a%%! (t) = ai" ().

Equations (2)-(4) determine the evolution of the joint
state of atom and photon pulse, and can be solved with-
out further approximation through numerical simulation.
However, before presenting the simulation results, first
we attack this problem analytically with some rough ap-
proximations to reveal the underlying physics. If the
atom is in the state |0), the Hamiltonian H does not
play a role in Eq. (2). In this case, from Egs. (2) and
(4) we find

out ~ ZA—K/2 in
ap, (t)"“ iA+I€/2ah (t) ’ (5)

where the high-frequency components of the field op-
erators /" (t) and a%* (t) have been discarded, which
is a valid approximation if the input pulse shape f; (¢)
changes slowly with time ¢ compared with the cavity de-
cay rate, i.e., |0.f; (t) /f; (t)] < k. Under this approx-
imation, we have af“ (t) ~ —ai™ (t) for resonant inter-
action A = 0, so the h component acquires the phase
7 after reflection from the cavity. However, if the atom
is in the state |1), the response function of the cavity is
modified by the coupling (3), where for the case of strong
coupling [20], the two dressed cavity modes have frequen-
cies that are effectively detuned from that of the input
pulse by A = +g, respectively. In the case that g > k,
we have a9"! (t) ~ ai" (t) from Eq. (5), thereby confirm-
ing the preceding analysis to give the desired CPF gate
UCPr.

Armed with this understanding, we finally present ex-
act numerical simulations for the theoretical model de-
scribed by Egs. (2)-(4). In the simulation, we dis-
cretize the continuum field operators a} (t) and a9“* (¢),
and change the dynamics into the Schrodinger picture
to avoid operator ordering. The details of the simula-
tion method can be found in Ref. [21]. Atomic sponta-
neous emission noise is effectively described by an imag-
inary part (—ivs/2) (le) (e] —|1) (1]) in the Hamiltonian
H [21], where ~; is the spontaneous emission rate from
the state |e). The input pulse is taken to be Gaussian

with f; (t) o exp [— (t—T/2)*/ (T/5)2} , where t ranges
from 0 to T'.

The numerical simulations show that the CPF gate
Uac;-P F works remarkably well. First of all, the condi-
tional phase factor is either '™ or €™ depending on the
atomic state |0) or |1), and this phase factor is very in-
sensitive to the variation of the coupling rate g in the

typical parameter region. For instance, its variation is
smaller than 1076 for g varying from 6« to x. This result
cannot be understood naively from Eq. (5), from which
one gets a phase of € only when g > k. The reason
for this discrepancy is that we have two addressed cavity
modes with symmetric effective detunings A = +g, and
their joint effect makes the phase factor e?* very stable
even if ¢ is reduced to a value comparable with k. The
stability of the conditional phase against variations of g
in the typical parameter region is an important advan-
tage of our scheme, as g in current experiments suffers
significant random variation (roughly by a factor of 2)
due to residual atomic motion [5].
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FIG. 2. (a) The shape functions |f; (¢)| for the input pulse
(solid curve) and the reflected pulse with the atom in the state
|0) (dashed curve) and |1) (dotted curve), respectively. The
dotted and solid curves closely match and are hardly distin-
guishable in the figure. (b) Fidelity F' due to shape mismatch
for the quantum CPF gate as a function of the input pulse du-
ration T in units of k™. The gate fidelity quickly approaches
1 for kT > 1. (c) The probability Ps of spontaneous emission
loss versus the normalized cavity coupling rate g/k, assuming
~vs = k (circles). The solid curve shows the fit by the empiri-
cal formula Py ~ 1/ (1 + 2¢°/k7s). Other parameters for (a),
(b), g =3k, v« = Kk, A =0, and for (¢), T/5=24/k, A =0.

The simulation also shows that the output pulse basi-
cally has the same shape as the input pulse if the pulse
duration T" > 1/k. Fig. 2a shows the output pulse
shapes | fi(t)| for the cases of the atomic states |1) and
|0), respectively, and demonstrates very good overlap
with the input pulse shape shown in the same figure.
In more quantitative terms, we consider the fidelity F'
of the CPF gate UaCjP F for the input atom-photon state

1Boi) @ [[W,0) = (|h) + [v))/v2]. Reductions in F be-



low unity are caused by shape mismatching between the
input and the output pulses and can be numerically cal-
culated. Fig. 2b shows the gate fidelity F' calculated in
this way for different pulse durations T'. For T = 240/k
(corresponding to a pulse width T'/5 ~ 1us for the pa-
rameters of Ref. [5]), the gate fidelity is about 99.9%.
The shape of the output pulse is also very insensitive to
variation of the coupling rate g in the typical parameter
region. For instance, the relative shape change is smaller
than 10~ for g varying from 6x to k.

The dominant noise in our CPF gate arises from pho-
ton loss due to atomic spontaneous emission, leading to
a vacuum-state output when the input is a single-photon
pulse. This noise yields a leakage error (also called an era-
sure error) which means that the final state is outside of
the qubit Hilbert space {|h),|v)} [16]. Fig. 2c shows the
probability Ps of spontaneous emission loss as a function
of g/k for the input state |1) ® |h), assuming 75 = k.
The curve is well simulated by the empirical formula
P, ~1/ (1 + 292/f<ws). If the initial state of the system
is |®q;) ® |¥,;), the average probability of the leakage
error per USPE gate is given by P, = P;/4. In current
experiments [5], typically (k,vs) /27 =~ (8,5.2) MHz, and
g/2m = 25 MHz, which yields P, ~ 0.8%. With these pa-
rameters, a typical pulse width T'/5 ~ 24/k =~ 0.5 ps. As
the pulses j and k are injected successively for the CPF
gate UJ%P P we need to introduce a time delay of few
us between them. For demonstration-of-principle experi-
ments, this time delay can be routinely achieved through
simple fiber loops. To obtain longer time delay, atomic
ensembles could be employed to store photon pulses for
several seconds [22-24].

Because the principal noise in our scheme is photon
loss during gate operations which is modeled as a leakage
error, very efficient quantum error correcting codes can
be incorporated into this computation scheme to achieve
fault-tolerance [16]. For instance, a rough estimate in
Ref. [26] shows that through concatenated coding, quan-
tum computation can tolerate leakage error at a percent
level per gate, as compared to the error threshold of
about 107° for general quantum errors [16]. The leak-
age error only affects the probability to register a photon
from each pulse and has no influence on the fidelity of its
polarization state if a photon is registered for each qubit
(e.g., through QND or destructive measurements). So,
leakage error induces small inefficiency for each gate (at
a level of a few percents), which is not debilitating for
experimental quantum computing up to dozens of CPF
gates even without quantum error correction.

In summary, we have shown that a cavity with a
single-trapped atom, conventionally used as a single-
photon source, can be exploited to realize scalable, fully-
functional quantum computation. The proposed scheme
is well based on the state-of-the-art in cavity quan-
tum electrodynamics, is robust to various experimental
sources of noise, and offers a promising approach to the
realization of large-scale fault-tolerant quantum compu-
tation.
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for a One-Atom Laser in a Regime of Strong Coupling
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Our recent paper reports the experimental realization of a one-atom laser in a regime of strong
coupling [1]. Here we provide the supporting theoretical analysis relevant to the operating regime
of our experiment. By way of a simplified four-state model, we investigate the passage from the
domain of conventional laser theory into the regime of strong coupling for a single intracavity atom
pumped by coherent external fields. The four-state model is also employed to exhibit the vacuum-
Rabi splitting and to calculate the optical spectrum. We next extend this model to incorporate
the relevant Zeeman hyperfine states as well as a simple description of the pumping processes
in the presence of polarization gradients and atomic motion. This extended model is employed to
make quantitative comparisons with the measurements of Ref. [1] for the intracavity photon number
versus pump strength and for the photon statistics as expressed by the intensity correlation function

9 (7).

I. INTRODUCTION

Although a number of theoretical analyses related to a one-atom laser have appeared in the literature [2, 3, 4, 5,
6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17], these prior treatments have not been specific to the parameter range of our
recent experiment as reported in Ref. [1]. Because of this circumstance, we have carried out theoretical investigations
in support of our experimental program, and present comparisons of these model calculations with our measurements
in this paper. In Section II we introduce a simplified four-state model that captures the essential features of the
operation of our one-atom laser in a domain of strong coupling but which avoids the complexity of the full Zeeman
substructure of the hyperfine levels in atomic Cesium. Sections III and IV then present in turn semiclassical and
quantum solutions for this four-state model system. By way of a physically motivated transformation for which the
length of a Fabry-Perot cavity is made progressively shorter, we utilize these results to investigate the continuous
passage from a domain in which conventional laser theory is applicable into a regime of strong coupling for which the
full quantum theory is required. We thereby gain some insight into the relationship of our system to prior theoretical
treatments related to the definition of the laser threshold and to “thresholdless” lasing [18, 19, 20, 21, 22]. The four-
state model is further employed to calculate the intracavity photon number versus pump detuning, thereby exhibiting
the “vacuum-Rabi” splitting for the atom-cavity system [23, 24, 25] and to compute the optical spectrum of the
intracavity field.

In Section V we describe the procedures followed to obtain solutions for an expanded model that incorporates
the relevant Zeeman substructure for the Cesium atom (32 atomic states), two modes of the cavity with orthogonal
polarizations, and a simple model to account for the polarization gradients of the optical fields. Comparisons of
the results from quantum jumps simulations based upon this expanded model with our measurements of the mean
intracavity photon number 7 versus normalized pump intensity = (Figure 3 of Ref. [1]) and with our experimental
determination of the intensity correlation function g(®(7) (Figure 4 of Ref. [1]) are given in Sections V(a) and V(b),
respectively.

Our intent here is not to belabor the comparison of our experiment with prior work on micro-masers and lasers,
for which extensive reviews are available [26, 27, 28, 29, 30]. Instead, our principal goal is to establish quantitative
correspondence between our measurements and fundamental theoretical models. Having thereby validated the suit-
ability of the theoretical treatments, we can then use these models to inform further experimental investigations of
the atom-cavity system.

II. FOUR-STATE MODEL

We begin with a four-state model to describe our experiment in which a single Cesium atom is trapped inside an
optical cavity as illustrated in Figure 1. Although the actual level structure of the Cesium 65/, <= 6 P55 transition
is more complex due to the Zeeman substructure, this simpler model offers considerable insight into the nature of
the steady states and dynamics. Following the labelling convention in Fig. 1, we introduce the following set of



FIG. 1: Illustration of a one-atom laser. (a) The atom is located in a high-Q optical cavity of decay rate , and is driven by
the fields Q34. (b) Inset of the atomic level scheme relevant to our experiment with the 65,5 < 6P;/, transition in atomic
Cesium. The “lasing” transition is from the excited level F' = 3’ to the ground level F' = 4. Pumping of the excited 3’ level
is by way of coherent excitation from a laser with Rabi frequency €23. Effective decay from the ground 4 level is provided by
the combination of a second field with Rabi frequency 4 and spontaneous decay 4’ — 3. Various radiative decay rates 7;;
appropriate to the D2 line in Cs are given in the text.

Hamiltonians H; in a suitably defined interaction picture (A= 1):
Hy = g13(a'Gga.e3 + Ges,gad), (1)

1., .
Hy = 593(093,83+083,g3)7

~ 1 . R
Hy = 594(093,83+083,g3)7

Hy = (Aac +Ay)id'a,

Hs = A30ec3.e3 + A4beden,

ﬁtot = H1+H2+ﬁ3+ff4+ff5.

In a standard convention, the atomic operators are &; ; = |i)(j| for states (4, j), with the association of the F' = 3,4
ground and the F/ = 3/,4’ levels with ¢3, ¢4, e3, e4, respectively. The Hamiltonian H; accounts for the coherent
coupling of the atomic transition e3 < g4 to the field of a single mode of the cavity with creation and annihilation
operators (af,a). The upper state e3 of the lasing transition is pumped by the (coherent-state) field 3, while
the lower state g4 is depleted by the field Q4 as described by (ﬁg,ﬂg), respectively. (fl4,fl5) account for various
detunings, including A s for the offset between the cavity resonance and the e3 « g4 atomic transition, Az for the
offset between the field Q3 and the g3 < e3 transition, and Ay for the offset between the field €4 and the g4 < e4
transition. Beyond these interactions, we also account for irreversible processes by assuming that the atom is coupled
to a continuum of modes other than the privileged cavity mode, and likewise for the coupling of the cavity mode to
an independent continuum of external modes.

With these preliminaries, it is then straightforward to derive a master equation for the density operator p for the
atom-cavity system [31, 32] in the Born-Markov approximation. For our model system, this equation is

dp

5
E - _i[Htotaﬁ] + ZLia (2)
i=1



Here, the terms L; account for each of the various decay channels, and are given explicitly by

Ly = w(2apa' —atap — pata) (3)
Lo = 733(2643,.63p0¢3,93 — Ges,eaP — PFezes),
Ly = V43(26 4,630 3,94 — Ge3,e30 — POe3,e3)s
Ly = 734(2643.c4p0ca,g3 — GeteaP — POesca),
Ls = 714(26g4,c4p0ca,g0 — Gedeap — POesca)

where the association of each term L; with the decay processes in Fig. 1 should be obvious. Spontaneous decay of
the various atomic transitions to modes other than the cavity mode proceeds at (amplitude) rate -;; as indicated in
Fig. 1, while the cavity (field) decay rate is given by k.

The master equation allows us to derive a set of equations for expectation values of atom (d; ;) and field (a)
operators. One example is for the atomic polarization (G44.3) on the e3 < g4 transition, namely

% = — (33 + va3) + 1A3] (Gga,e3) )

—1 ((23(694@3} - Q4<&84,83>)
+ig43 (<663,63d> - <&g4)g4d>) .

A solution to this equation requires not only knowledge of single-operator expectation values (d; ;) and (a), but also
of operator products such as (Ges,3a). We can develop coupled equations for such products (G; ;a) but would find
that their solution requires in turn yet higher order correlations, ultimately leading to an unbounded set of equations.

Conventional theories of the laser proceed beyond this impasse by one of several ultimately equivalent avenues.
Within the setting of our current approach, a standard way forward is to factorize operator products in the fashion

(6i,5a) = (Gi,5)(a) + ((65,50) — (F4,5)(a)) (5)

with then the additional terms of the form ((&;;a) — (6;;)(a)) treated as Langevin noise. Such approaches rely
on system-size expansions in terms of the small parameters (1/ng,1/Ny), where (ng, No) are the critical photon
and atom number introduced in Ref. [1] for our one-atom laser. Within the context of conventional laser theory,
these parameters are described more fully in Ref. [31, 32], while their significance in cavity QED is discussed more
extensively in Ref. [33]. In qualitative terms, conventional theories of the laser in regimes for which (ng, No) > 1
result in dynamics described by evolution of mean values (&; ;) and (@) (that are of order unity when suitably scaled),
with then small amounts of quantum noise (that arise from higher order correlations of order (1/ng,1/Np) < 1 ).

In the following section, we discuss the so-called semiclassical solutions obtained from the factorization (6; ;a) =
(6i,5)(a) neglecting quantum noise. In Section IV, we then describe the full quantum solution obtained directly from
the master equation.

III. SEMICLASSICAL THEORY FOR A FOUR-STATE ATOM

We will not present the full set of semiclassical equations here since they are derived in a standard fashion from
the master equation Eq. 2 [32, 34]. One example is for the atomic polarization (544 c3) on the e3 < g4 transition, for
which Eq. 4 becomes

Wootet) (s 4+ 1s) +889] B0 ©)

—i (Q3(0ga,g3) — Qu(Gea,e3))
+iga3 ((Ge3,e3) — (Oga,ga)) @,

where o = (a). There is a set of 18 such equations for the real and imaginary components of the various field and
atomic operators, together with the constraint that the sum of populations over the four atomic states be unity. We
obtain the steady state solutions to these equations, where for the present purposes, we restrict attention to the case of
zero detunings A 4o = Az = Ay = 0. Allowing for nonzero detunings of atom and cavity would add to the complexity
of the semiclassical analysis because of the requirement for the self-consistent solution for the frequency of emission
[see, for example, Ref. [35] for the case of a (multi-atom) Raman laser].
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FIG. 2: Results from the semiclassical theory as applied to the atom-cavity system in Fig. 1. (a,b) Intracavity intensity |oz|2 in
units of the critical photon number ng is plotted as a function of the pump intensity Iz = (527—3;)2 A threshold for |a|? is evident
for I3 ~ 0.8. (c,d) Populations oi; = (63:) versus Iz. In (c), population inversion oe3,e3 > 044,94 OCcurs over a wide range as the
pump intensity I3 is increased from 0, including in the threshold region I3 ~ 0.8, with then “population clamping” for oes,e3

as I3 increases beyond threshold. In all cases, the recycling intensity Iy = (%)2 = 3 and the detunings Aac = Az = Ay = 0.

The semiclassical solutions are obtained for the parameters relevant to our experiment with atomic Cs, namely

31 7 5
(733, 743, V44, V34) = (Z’Z’E’E)W’ (7)

where these rates are appropriate to the (amplitude) decay of the levels 6Ps/o, F' = 3,4 — 6S)/5, ' = 3,4 with
v = 27 X 2.6 MHz (i.e., a radiative lifetime 7 = 1/2y = 30.6 ns). The cavity (field) decay rate s is measured to be
k = 27 x 4.2 MHz. The rate of coherent coupling gs3 for the e3 < g4 transition (i.e., 6P /o, [’ = 3" <+ 655, F = 4) is
calculated from the known cavity geometry (waist and length) and the decay rate 7, and is found to be g43 = 27 x 16
MHz based upon the effective dipole moment of the transition.

Examples of the resulting steady-state solutions for the intracavity intensity |a|?> together with the populations
oi; of the four atomic states are displayed in Figure 2. Parts (a) and (c) of the figure illustrate the behavior of |a/?
and o;; around the semiclassical threshold as functions of the pump intensity I3. Parts (b) and (d) explore these
dependencies over a wider range in I3. For fixed ratios among the various decay rates as in Eq. 7, the semiclassical
solutions for |a|?/ng as well as the various populations o;; plotted in Fig. 2 depend only on the critical atom number
Ny (or equivalently, the cooperativity parameter C; = 1/Nj for a single atom in the cavity). Hence, as emphasized in
the Supplementary Information published with our paper Ref. [1], these steady state solutions from the semiclassical
theory are independent of the cavity length [, and provide a point of reference for understanding “lasing” for a single
atom in a cavity. This is because Ny = 2;27 is independent of cavity length [ for a cavity with constant mirror
reflectivity and cavity waist wy.

Importantly, the semiclassical theory predicts threshold behavior for parameters relevant to our experiment, in-
cluding inversion oe3¢3 > 094,94 in the threshold region, although this is not essential for Raman gain for g3 — g4
via e3. One atom in a cavity can exhibit such a “laser” transition for the steady state solutions in the semiclassical
theory because the cooperativity parameter C7 > 1. Indeed, in these calculations we used our experimental value for
the cooperativity parameter C; = 1/Ng ~ 12. Among other relevant features illustrated in Fig. 2 is the quenching
of the laser emission around I3 ~ 6.5, presumably due to an Autler-Townes splitting of the excited state e3 at high
pump intensity [8].




A. Relationship to a Raman laser

In many respects our system is quite similar to a three-level Raman scheme, for which there is an extended literature
(e.g., Ref. [35] and references therein). In fact we have carried out an extensive analysis of a Raman scheme analogous
to our system in Fig. 1. Pumping is still done by the field Q3 on the 3 — 3’ transition. However, recycling 4 — 4’ — 3
by the field 4 and decay -y34 is replaced by direct decay 4 — 3 at a fictitious incoherent rate of decay (O34 with level
4’ absent. In all essential details, the results from this analysis are in correspondence with those presented from our
four-level analysis in this section. In particular, the threshold onsets in precisely the same fashion as in Fig. 2(a), and
the output is “extinguished” at high pump levels for 3. This turn-off appears to be associated with an AC-Stark
splitting of the excited 3’ level by the Q3 field that drives the 3’ — 4 level out of resonance with the cavity due to the
splitting of the upper level 3’. Over the range of intensities explored in this section, the “quenching” behavior seems
to be unrelated to any coherence effect associated with the combination of the field €24 and decay vs4.

IV. QUANTUM THEORY FOR A FOUR-STATE ATOM

A one-atom laser operated in a regime of strong coupling has characteristics that are profoundly altered from the
familiar case (described e.g. in Refs. [31, 32]), for which the semiclassical equations are supplemented with (small)
quantum noise terms. The question then arises as how to recognize a laser in this new regime of strong coupling,
where we recall the difficulty that this issue engenders even for systems with critical photon number much greater
than unity [19, 20, 21, 22]. The perspective that we adopt here is to investigate the continuous transformation of a
one-atom laser from a domain of weak coupling for which the conventional theory should be approximately valid into
a regime of strong coupling for which the full quantum theory is required.

Towards this end, we consider a scenario in which the cavity length (and hence its volume) is gradually reduced
from a “large” value for which the conventional theory is valid to a “small” value for which the system is well into
a regime of strong coupling. As illustrated in Figure 3 , this transformation is assumed to be under conditions of
constant cavity waist wg and mirror reflectivity R, in which case scaling the length by a factor f causes the other
parameters to scale as follows:

L= 1=, (8)
g9 — gr=g/f"?

Kk — Kf=kK/f,

Y=
No — No,
no — Nof :f’no.

Recall that in the semiclassical theory illustrated in Fig. 2, the quantity |a|? /ng is invariant under this transformation.
By contrast, the role of single photons becomes increasingly important as the cavity length is reduced (i.e., nos becomes
ever smaller), so that deviations from the familiar semiclassical characteristics should become more important, and
eventually dominant.

waist w, constant
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l

FIG. 3: Illustration of the scaling transformation considered in Eqn. 8 whereby the length of a spherical mirror Fabry-Perot
cavity is transformed | — fl while the cavity waist wo and the atomic position are held constant. The atom is indicated by the
“dot” in the center of the cavity mode.
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FIG. 4: The mean intracavity photon number 7i/nos (blue) and normalized intensity correlation function g (0) (red) are
plotted as functions of pump intensity Is = (Q3/27)? in (a)-(d). In (a)-(c), the cavity length is made progressively shorter
(250010, 100lo, lo), where lp = 42.2 pm is the length of our actual cavity. The corresponding saturation photon numbers are
nos =(33.0, 1.32, 0.013). 7/nos and g2 (0) are calculated from the quantum theory for the four-state system in Fig. 1, while
|o|?/noy given by the black curve is from the semiclassical theory. (d) @ (blue), g (0) (red), and the Mandel Q parameter
(green) shown over an extended range of pump intensity Is for I = lo. In all cases, I4 = (Q/27)> =2, the 3 — 4’ and 4 — 4’
transitions are driven on resonance, and the cavity detuning wca = 0. Other parameters are as given in the text.

A. Field and atom variables for various cavity lengths

Framed by this perspective, we now present results from the quantum treatment for a four-state model for the
atom. Our approach is to obtain steady state results for various operator expectation values directly from numerical
solutions of the master equation given in Eq. 2 by way of the Quantum Optics Toolbox written by S. Tan [36]. Since
such numerical methods are by now familiar tools, we turn directly to results from this investigation presented in
Figs. 4-9.

These figures display the behavior of various characteristics of the atom-cavity system as the cavity length is reduced
from [ = 25001y to { = 100l to I = Iy to I = 1p/99, where |y = 42.2um is the actual length of our cavity. Figure
4 provides an overview of the evolution and is reproduced from the Supplementary Information in Ref. [1], while
Figures 5-9 provide more detailed information about the intracavity field and atomic populations.

Figure 4(a-c) and part (a) in Figs. 5, 6, and 7 display the mean intracavity photon number 7i/nos (where ngs
is calculated for the particular length), and compare this result to |a|?/ngs from the semiclassical theory. The
correspondence is close in Figs. 4(a) and 5(a) since ngy = 33 in this case, but becomes increasingly divergent in
Figs. 4(b) and 6(a) for which no; = 1.3, and in Figs. 4(c) and 7(a) for which ngs(f = 1) = nop = 0.013 (as in our
experiment).

In qualitative terms, the peak in each of the curves for 7/ngs in Figs. 5, 6, and 7 arises because of a “bottleneck”
in the cycle g3 — e3 — g4 — e4 — ¢3. For our scheme with one atom in a cavity, this cycle can proceed at a rate
no faster than that set by the decay rate v34. For higher pump intensities I3, the quenching of the emission displayed
by the semiclassical theory becomes less and less evident with decreasing [ as the coherent coupling rate g becomes
larger in a regime of strong coupling.

Part (b) in Figs. 5, 6, and 7 shows the populations o;; of the four states. A noteworthy trend here is the rapid
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FIG. 5: Steady state solutions as functions of pump intensity I3 obtained from the numerical solution of the master equation
2 for the four-state atom in a cavity illustrated in Fig. 1. Here, the cavity length [ = 2500lp, where lop = 42.2pum is the cavity
length in our experiment. (a) Mean intracavity photon number 7 normalized to the saturation photon number noy = 33 (in
blue). The corresponding result for |a|? /nos from the semiclassical theory is given by the black curve. (b) Populations o;; of the
four states as labelled. (c¢) Mean intracavity photon number 7 (blue), Mandel @ parameter (green), and intensity correlation
function ¢®(0) (red). (d) Ratio R of photon flux from the cavity mode xf 7 as compared to the rate of atomic fluorescence
Ya30e3,e3 for the excited state e3. In all cases, the depleting intensity I4 = (g—j’:)2 = 3 and the detunings Aasc = Az = Ay = 0.
Field and atom decay rates are as specified in the text.

reduction of the population o3 3 with decreasing cavity length. Again, the rate g becomes larger as [ is reduced, and
eventually overwhelms all other rates, so that population promoted to this state is suppressed.

Figure 4 and part (c) in Figs. 5, 6, and 7 address the question of the photon statistics by plotting the Mandel @
parameter (or equivalently the Fano factor F' = @) + 1) as well as the normalized second-order intensity correlation
function ¢®(0) [37]. As shown in Fig. 4(a), for large I = 25001y, the region around the semiclassical threshold
displays the familiar behavior associated with a conventional laser [32, 34, 37, 38, 39], namely that ¢(*)(0) evolves
smoothly from ¢(®(0) ~ 2 below the semiclassical threshold to ¢(?(0) ~ 1 above this threshold. Furthermore, Fig.
5(c) shows that the Mandel @ parameter has a maximum in the region of the threshold [19]. Beyond this conventional
(first) threshold, the Mandel @ parameter in Fig. 5 (c) also exhibits a second maximum, that has been described as
a “second” threshold for one-atom lasers [8], and g(®(0) rises back from 1 to 2. With decreasing cavity length, these
features are lost as we move into a regime of strong coupling. For example, the two peaks in () merge into one broad
minimum with @ < 0 indicating the onset of manifestly quantum or nonclassical character for the emission from the
atom-cavity system.

Finally, part (d) in Figs. 5, 6, and 7 presents results for the ratio R, where
Kfn

R

9)

Y430 e3,e3

gives the ratio of photon flux x¢n from the cavity mode to the photon flux 43033 appearing as fluorescence into
modes other than the cavity mode from the spontaneous decay e3 — g4. For a conventional laser, K < V430¢3,e3
below threshold, and kyf > 743033 above threshold, with the laser threshold serving as the abrupt transition
between these cases in the manner of a nonequilibrium phase transition [34, 39]. As illustrated in Fig. 7, no such
transition is required in the regime of strong coupling; R > 1 from the onset as the pump I3 is increased. This
behavior is analogous to the “thresholdless” lasing discussed in Refs. [18, 20, 21, 22] and reviewed by Rice and
Carmichael [19].

For the system illustrated in Figure 3, the progression in length reduction has a limit at [ = A\y/2 corresponding
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FIG. 6: Steady state solutions as functions of pump intensity I3 obtained from the numerical solution of the master equation
2 for the four-state atom in a cavity illustrated in Fig. 1. Here, the cavity length [ = 100y, where lop = 42.2um is the cavity
length in our experiment. (a) Mean intracavity photon number 7 normalized to the saturation photon number ngy = 1.3 (in
blue). The corresponding result for |a|?/ng; from the semiclassical theory is given by the black curve. (b) Populations o;; of the
four states as labelled. (c¢) Mean intracavity photon number 7 (blue), Mandel ) parameter (green), and intensity correlation
function g (0) (red). (d) Ratio R of photon flux from the cavity mode x; 7 as compared to the rate of atomic fluorescence

Y430e3,e3 for the excited state e3. In all cases, the depleting intensity Iy = (Q—f/)2 = 3 and the detunings Asc = Az = Ay = 0.

2
Field and atom decay rates are as specified in the text.

to a Fabry-Perot cavity with length equal to the lowest order longitudinal mode Ag/2, where \g = 852.3 nm is the
wavelength of the cavity QED transition. To reach this limit from the length ly appropriate to our actual cavity, we
must scale lg — flp with f = 1/99. In a continuation of the sequence shown in Figs. 5, 6, and 7, we display in Fig. 8
results for such a cavity with I = Ag/2. Note that although C7 = 1/Ny ~ 12 is invariant with respect to this scaling and
the saturation photon number is reduced to nos = 1.31 x 10~%, nevertheless the atom-cavity system has passed out of
the domain of strong coupling, even though (ngyr, No) < 1. This is because strong coupling requires that go > (v, k),
so that (ng, Ng) < 1 is a necessary but not sufficient condition for achieving strong coupling. For the progression
that we are considering with diminishing length (but otherwise with the parameters of our system), I = A\g/2 does
not lie within the regime of strong coupling (gs3/7 = 61, ga3/x = 0.40), but rather more toward the domain of a
“one-dimensional atom”, for which x > ¢g?/k > v (see, for example, Refs. [40, 41] for theoretical discussions and a
previous experimental investigation). In this domain of the Purcell effect [26, 28, 29, 30], the fractional emission into
the cavity mode as compared to fluorescent emission into free space for the 3’ — 4 transition is characterized by the
parameter

2043
L=~ 0.99, (10)
14 2C!

where CYB) = C1 x (v/743) ~ 48.

As compared to Figs. 5, 6, and 7, a noteworthy feature of the regime depicted in Fig. 8 is the absence of a
dependence of g(®(0) on the pump level I3. In fact, g (0) ~ 0 over the entire range shown, so that the cavity field is
effectively occupied only by photon numbers 0 and 1. In correspondence to this situation, the Mandel () parameter in
Fig. 8(c) is essentially given by the mean of the intracavity photon number, Q ~ —7, with 7 < 1. Furthermore, the
dominance of emission into the cavity mode over fluorescence decay becomes even more pronounced than in Fig. 7(d),
as documented by the ratio R in Fig. 8(d). In agreement with expectation set by Eq. 10, note that R ~ S45/(1 — B43).
All in all, the “bad-cavity” limit specified by & > g%/k > v [40, 41] (toward which Fig. 8 is pressing) is a domain of
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FIG. 7: Steady state solutions as functions of pump intensity I3 obtained from the numerical solution of the master equation
2 for the four-state atom in a cavity illustrated in Fig. 1. Here, the cavity length | = lp, where lp = 42.2um is the cavity
length in our experiment. (a) Mean intracavity photon number 7 normalized to the saturation photon number ng = 0.013 (in
blue). The corresponding result for |a|?/no from the semiclassical theory is given by the black curve. (b) Populations o; of the
four states as labelled. (c¢) Mean intracavity photon number 7 (blue), Mandel @ parameter (green), and intensity correlation
function ¢ (0) (red). (d) Ratio R of photon flux from the cavity mode x 7 as compared to the rate of atomic fluorescence
v430e3,e3 for the excited state e3. In all cases, the depleting intensity Iy = (%)2 = 3 and the detunings Asc = Az = Ay = 0.
Field and atom decay rates are as specified in the text.

single-photon generation for the atom-cavity system, which for f < 1 has passed out of the regime of strong coupling.

Figures 5, 6, 7, and 8 provide a step-by-step description of the evolution of the atom-cavity system from the domain
of conventional laser theory (I > Iy as in Fig. 5 with f = 2500), into the regime of strong coupling (I = [y as in Fig.
7 with f = 1), and then out of the strong-coupling regime into the Purcell domain (I = 1y/99 ~ \y/2 as approached
in Fig. 8 with f = 0.01) [26, 28, 29, 30]. We now attempt to give a more global perspective of the scaling behavior of
the atom-cavity system by examining various field and atomic variables directly as functions of the scale parameter
f =1/lp. A particular set of such results is displayed in Figure 9, where the pump intensity I3 = 3 is fixed near the
peak in the output from the semiclassical theory in Fig. 2, and the recycling intensity I is held constant at Iy = 3.

In Fig. 9(a) the mean intracavity photon number 7 is seen to undergo a precipitous drop as the cavity length
is made progressively shorter (i.e., increasing f —1/2 since | o« f). However, when 7 is normalized to the critical
photon number ngs , the quantity 7/ngs is seen to approach unity for small f —1/2 (i.e., long cavities with [ > ly) as
appropriate to the conventional theory in Fig. 5). With increases in fo12 (i.e., shorter cavity lengths), 7i/ngy rises to
a maximum around f ~ 3 for strong coupling with [ ~ [y as in Fig. 7, before then decreasing to approach a constant
value for yet larger values of f~'/2 as the system exits from the domain of strong coupling.

Also shown in Fig. 9(a) are the quantities g (0) and Q+ 1 that characterize the photon statistics of the intracavity
field. As previously noted, g(z)(O) lies in the range 1 < g (0) < 2 for conventional laser theory, but drops below
unity in the regime of strong coupling and approaches zero for f < 1. In this same limit of very small cavities in the
Purcell regime, @ ~ —n.

Fig. 9§b) displays the populations for the four-state system as functions of f For the conventional regime
with f71/2 < 1, there is population inversion, ocg e3 > 044,44 (Which was shown in Fig. 2 for small values of I3), but
this possibility is lost for increasing f~'/2 (i.e., decreasing cavity length). Strong coupling dictates that the rate g
dominates all others, so that appreciable population cannot be maintained in the state e3. Finally, Fig. 9(d) displays
the dependence of the ratio R = (k7)/(V430¢3,e3) on f_1/2. From values R < 1 in the conventional domain, R rises
monotonically with decreasing cavity length reaching the plateau R > 1 specified by Eq. 10.

-1/2.
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FIG. 8: Steady state solutions as functions of pump intensity I3 obtained from the numerical solution of the master equation
2 for the four-state atom in a cavity illustrated in Fig. 1. Here, the cavity length | = 1o/99 ~ X\o/2 (i.e., f = 1/99), where
lo = 42.2pum is the cavity length in our experiment and Ao = 852.3 nm is the wavelength of the cavity QED transition. (a) Mean
intracavity photon number 7 normalized to the saturation photon number ngy = 1.31 X 1074 (in blue). The corresponding
result for |a|?/nos from the semiclassical theory is given by the black curve. (b) Populations o;; of the four states as labelled.
(c) Mean intracavity photon number 7 (blue), Mandel @ parameter (green), and intensity correlation function g (0) (red).
(d) Ratio R of photon flux from the cavity mode & ¢ 1 as compared to the rate of atomic fluorescence 7y430e3,e3 for the excited
state e3. In all cases, the depleting intensity I4, = (2—;‘)2 = 3 and the detunings Aac = Az = A4 = 0. Field and atom decay
rates are as specified in the text.

B. Vacuum-Rabi splitting

In the preceding discussion, we have compared various aspects of our one-atom system with conventional lasers and
have restricted the analysis to the case of resonant excitation with A3 = 0. Our actual system operates in a regime
of strong coupling, so that there should be an explicit manifestation of the “vacuum-Rabi” splitting associated with
one quantum of excitation in the 4 < 3’ manifold [23, 24, 25].

To investigate this question, we consider the dependence of the average intracavity photon number 7 on the detuning
As of the pump field Q3, with the result of this analysis illustrated in Fig. 10. For weak excitation I3 < 1 (well
below the peak in F